1
GATE ECE 2016 Set 2
Numerical
+2
-0
Consider random process $$X(t) = 3V(t) - 8$$, where $$V$$ $$(t)$$ is a zero mean stationary random process with autocorrelation $${R_v}\left( \tau \right) = 4{e^{ - 5\left| \tau \right|}}$$. The power of $$X(t)$$ is _______.
Your input ____
2
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
An antenna pointing in a certain direction has a noise temperature of 50K. The ambient
temperature is 290K. The antenna is connected to a pre-amplifier that has a noise figure of 2dB
and an available gain of 40 dB over an effective bandwidth of 12 MHz. The effective input noise
temperature Te for the amplifier and the noise power Pao at the output of the preamplifier,
respectively, are
3
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A wide sense stationary random process $$X(t)$$ passes through the $$LTI$$ system shown in the figure. If the autocorrelation function of $$X(t)$$ is $${R_x}\left( \tau \right),$$ then the autocorrelation function $${R_x}\left( \tau \right),$$ of the output $$Y(t)$$ is equal to
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A zero mean white Gaussian noise having power spectral density $${{{N_0}} \over 2}$$ is passed through an $$ LTI $$
filter whose impulse response $$h(t)$$ is shown in the figure. The variance of the filtered noise at $$t = 4$$ is
Questions Asked from Random Signals and Noise (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (2)
GATE ECE 2023 (2)
GATE ECE 2022 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2016 Set 2 (2)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (3)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 3 (3)
GATE ECE 2014 Set 2 (1)
GATE ECE 2014 Set 1 (2)
GATE ECE 2013 (2)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2008 (1)
GATE ECE 2006 (3)
GATE ECE 2005 (2)
GATE ECE 2004 (1)
GATE ECE 2002 (1)
GATE ECE 1992 (1)
GATE ECE 1991 (1)
GATE ECE 1989 (2)
GATE ECE 1987 (2)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics