1
GATE ECE 2015 Set 3
Numerical
+2
-0
A random binary wave $$y(t)$$ is given by $$$y\left( t \right) = \sum\limits_{n = - \infty }^\infty {{X_n}p\left( {t - nT - \phi } \right)} $$$

where $$p(t) = u(t) - u(t - T)$$, $$u(t)$$ is the unit step function and $$\phi $$ is an independent random variable with uniform distribution in $$[0, T]$$. The sequence $$\left\{ {{X_n}} \right\}$$ consists of independent and identically distributed binary valued random variables with $$P\left\{ {{X_n} = + 1} \right\} = P\left\{ {{X_n} = - 1} \right\} = 0.5$$ for each $$n$$.

The value of the autocorrelation $${R_{yy}}\left( {{{3T} \over 4}} \right)\underline{\underline \Delta } E\left[ {y\left( t \right)y\left( {t - {{3T} \over 4}} \right)} \right]\,\,$$


equals ------------ .
Your input ____
2
GATE ECE 2014 Set 3
Numerical
+2
-0
A real band-limited random process $$X( t )$$ has two -sided power spectral density $$${S_x}\left( f \right) = \left\{ {\matrix{ {{{10}^{ - 6}}\left( {3000 - \left| f \right|} \right)Watts/Hz} & {for\left| f \right| \le 3kHz} \cr 0 & {otherwise} \cr } } \right.$$$

Where f is the frequency expressed in $$Hz$$. The signal $$X( t )$$ modulates a carrier cos $$16000$$ $$\pi t$$ and the resultant signal is passed through an ideal band-pass filter of unity gain with centre frequency of $$8kHz$$ and band-width of $$2kHz$$. The output power (in Watts) is ______.

Your input ____
3
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Let $$X(t)$$ be a wide sense stationary $$(WSS)$$ random procfess with power spectral density $${S_x}\left( f \right)$$. If $$Y(t)$$ is the process defined as $$Y(t) = X(2t - 1)$$, the power spectral density $${S_y}\left( f \right)$$ is .
A
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right){e^{ - j\pi f}}$$
B
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right){e^{ - j\pi f/2}}$$
C
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right)$$
D
$${S_y}\left( f \right) = {1 \over 2}{S_x}\left( {{f \over 2}} \right){e^{ - j2\pi f}}$$
4
GATE ECE 2014 Set 3
Numerical
+2
-0
Let $${X_1},\,{X_2},$$ and $${X_3}$$ be independent and identically distributed random variables with the uniform distribution on $$\left[ {0,\,1} \right]$$. The probability $$P\left\{ {{X_1} + {X_2} \le {X_3}} \right\}$$ is ___________ .
Your input ____
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12