1
GATE ECE 2011
+2
-0.6
X(t) is a stationary random process with autocorrelation function Rx$$\left( \tau \right)$$= exp$$\left( { - \pi {\tau ^2}} \right)$$. This process is passed through the system shown below. The power spectral density of the output process Y(t) is A
$$\left( {4\,{\pi ^2}{f^2} + 1} \right)\,\exp \left( { - \pi {f^2}} \right)$$
B
$$\left( {4\,{\pi ^2}{f^2} - 1} \right)\,\exp \left( { - \pi {f^2}} \right)$$
C
$$\left( {4\,{\pi ^2}{f^2} + 1} \right)\,\exp \left( { - \pi f} \right)$$
D
$$\left( {4\,{\pi ^2}{f^2} - 1} \right)\,\exp \left( { - \pi f} \right)$$
2
GATE ECE 2010
+2
-0.6
X(t) is a stationary process with the power spectral density Sx(f) > 0 for all f. The process is passed through a system shown below. Let Sy(f) be the power spectral density of Y(t). Which one of the following statements is correct?

A
Sy(f) > 0 for all f
B
Sy(f) > 0 for $$\left| f \right|$$ > 1 kH
C
Sy(f) > 0 for f = nf0, f0 = 2kHz, n any integer
D
Sy(f) > 0 for f = (2n + 1)f0, f0 = 1 kHz, n any integer
3
GATE ECE 2008
+2
-0.6
Noise with double-sided power spectral density of K over all frequencies is passed through a RC low pass filter with 3-dB cut-off frequency of fc. The noise power at the filter output is
A
K
B
K fc
C
K $$\pi$$ fc
D
$$\infty$$
4
GATE ECE 2006
+2
-0.6
A zero-mean white Gaussian noise is passed through an ideal low-pass filter of bandwidth 10 kHz. The output is then uniformly sampled with sampling period ts = 0.03 msec. The samples so obtained would be
A
correlated
B
statistically independent
C
uncorrelated
D
orthogonal
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Communications
Electromagnetics
General Aptitude
Engineering Mathematics
EXAM MAP
Joint Entrance Examination