1
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
An antenna pointing in a certain direction has a noise temperature of 50K. The ambient temperature is 290K. The antenna is connected to a pre-amplifier that has a noise figure of 2dB and an available gain of 40 dB over an effective bandwidth of 12 MHz. The effective input noise temperature Te for the amplifier and the noise power Pao at the output of the preamplifier, respectively, are
A
$${T_e} = 169.36K\,\,\,$$ and $${P_{ao}} = 3.73 \times {10^{ - 10}}\,\,W$$
B
$${T_e} = 170.8K\,\,\,$$ and $${P_{ao}} = 4.56 \times {10^{ - 10}}\,\,W$$
C
$${T_e} = 182.5K\,\,\,$$ and $${P_{ao}} = 3.85 \times {10^{ - 10}}\,\,W$$
D
$${T_e} = 160.62K\,\,\,$$ and $${P_{ao}} = 4.6 \times {10^{ - 10}}\,\,W$$
2
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A wide sense stationary random process $$X(t)$$ passes through the $$LTI$$ system shown in the figure. If the autocorrelation function of $$X(t)$$ is $${R_x}\left( \tau \right),$$ then the autocorrelation function $${R_x}\left( \tau \right),$$ of the output $$Y(t)$$ is equal to GATE ECE 2016 Set 3 Communications - Random Signals and Noise Question 29 English
A
$$2{R_X}\left( \tau \right) + {R_X}\left( {\tau - {T_0}} \right) + {R_X}\left( {\tau + {T_0}} \right)$$
B
$$2{R_X}\left( \tau \right) - {R_X}\left( {\tau - {T_0}} \right) - {R_X}\left( {\tau + {T_0}} \right)$$
C
$$2{R_X}\left( \tau \right) + 2{R_X}\left( {\tau - 2{T_0}} \right)$$
D
$$2{R_X}\left( \tau \right) - 2{R_X}\left( {\tau - 2{T_0}} \right)$$
3
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A zero mean white Gaussian noise having power spectral density $${{{N_0}} \over 2}$$ is passed through an $$ LTI $$ filter whose impulse response $$h(t)$$ is shown in the figure. The variance of the filtered noise at $$t = 4$$ is GATE ECE 2015 Set 2 Communications - Random Signals and Noise Question 36 English
A
$${3 \over 2}{A^2}{N_0}$$
B
$${3 \over 4}{A^2}{N_0}$$
C
$${A^2}{N_0}$$
D
$${1 \over 2}{A^2}{N_0}$$
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
$$\mathop {\left\{ {{X_n}} \right\}}\nolimits_{n = - \infty }^{n = \infty } $$ is an independent and identically distributed (i.i.d) random process with $${X_n}$$ equally likely to be $$+1$$ or $$-1$$. $$\mathop {\left\{ {{Y_n}} \right\}}\nolimits_{n = - \infty }^{n = \infty } \,$$ is another random process obtained as $${Y_n} = {X_n} + 0.5{X_{n - 1}}.\,\,\,$$
The autocorrelation function of $$\mathop {\left\{ {{Y_n}} \right\}}\nolimits_{n = - \infty }^{n = \infty } $$, denoted by $${r_y}\left[ K \right],$$ is
A
GATE ECE 2015 Set 2 Communications - Random Signals and Noise Question 35 English Option 1
B
GATE ECE 2015 Set 2 Communications - Random Signals and Noise Question 35 English Option 2
C
GATE ECE 2015 Set 2 Communications - Random Signals and Noise Question 35 English Option 3
D
GATE ECE 2015 Set 2 Communications - Random Signals and Noise Question 35 English Option 4
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12