1
GATE ECE 1991
Fill in the Blanks
+2
-0
Two resistors $$\,{R_1}$$ and $$\,{R_2}$$ (in ohms) at temperatures $${T_1}{}^ \circ K$$ and $${T_2}{}^ \circ K$$ respectively, are connected in series. Their equivalent noise temperature is.
2
GATE ECE 1989
MCQ (More than One Correct Answer)
+2
-0
A part of a communication system consists of an amplifier of effective noise temperature, $$Te = \,\,21\,\,{}^ \circ K\,$$, and a gain of 13 dB, followed by a cable with a loss of 3 dB. Assuming the ambient temperature to be $$300{}^ \circ \,K$$, we have for this part of the communication system,
3
GATE ECE 1989
MCQ (Single Correct Answer)
+2
-0.6
Zero mean Gaussian noise of variance N is applied to a half wave rectifier. The mean squared value of the rectifier output will be:
4
GATE ECE 1987
MCQ (Single Correct Answer)
+2
-0.6
The variance of a random variable X is $$\sigma _x^2\,.$$ Then the variance of - kx (where k is a positive constant ) is
Questions Asked from Random Signals and Noise (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (2)
GATE ECE 2023 (2)
GATE ECE 2022 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2016 Set 2 (2)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (3)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 3 (3)
GATE ECE 2014 Set 2 (1)
GATE ECE 2014 Set 1 (2)
GATE ECE 2013 (2)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2008 (1)
GATE ECE 2006 (3)
GATE ECE 2005 (2)
GATE ECE 2004 (1)
GATE ECE 2002 (1)
GATE ECE 1992 (1)
GATE ECE 1991 (1)
GATE ECE 1989 (2)
GATE ECE 1987 (2)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude