1
GATE ECE 2016 Set 2
Numerical
+2
-0
An information source generates a binary sequence $$\left\{ {{\alpha _n}} \right\}.{\alpha _n}$$ can take one of the two possible values −1 and +1 with equal probability and are statistically independent and identically distributed. This sequence is pre-coded to obtain another sequence $$\left\{ {{\beta _n}} \right\},$$ as $${\beta _n} = {\alpha _n} + k{\mkern 1mu} {\alpha _{n - 3}}$$ . The sequence $$\left\{ {{\beta _n}} \right\}$$ is used to modulate a pulse $$g(t)$$ to generate the baseband signal

$$x\left( t \right) = \sum\limits_{n = - \infty }^\infty {{\beta _n}g\left( {t - nT} \right),} $$ where $$g\left( t \right) = \left\{ {\matrix{ {1,} & {0 \le t \le T} \cr 0 & {otherwise} \cr } } \right.$$

If there is a null at $$f = {1 \over {3T}}$$ in the power spectral density of $$X(t)$$, then $$k$$ is _________.

Your input ____
2
GATE ECE 2016 Set 2
Numerical
+2
-0
Consider random process $$X(t) = 3V(t) - 8$$, where $$V$$ $$(t)$$ is a zero mean stationary random process with autocorrelation $${R_v}\left( \tau \right) = 4{e^{ - 5\left| \tau \right|}}$$. The power of $$X(t)$$ is _______.
Your input ____
3
GATE ECE 2015 Set 3
Numerical
+2
-0
A random binary wave $$y(t)$$ is given by $$$y\left( t \right) = \sum\limits_{n = - \infty }^\infty {{X_n}p\left( {t - nT - \phi } \right)} $$$

where $$p(t) = u(t) - u(t - T)$$, $$u(t)$$ is the unit step function and $$\phi $$ is an independent random variable with uniform distribution in $$[0, T]$$. The sequence $$\left\{ {{X_n}} \right\}$$ consists of independent and identically distributed binary valued random variables with $$P\left\{ {{X_n} = + 1} \right\} = P\left\{ {{X_n} = - 1} \right\} = 0.5$$ for each $$n$$.

The value of the autocorrelation $${R_{yy}}\left( {{{3T} \over 4}} \right)\underline{\underline \Delta } E\left[ {y\left( t \right)y\left( {t - {{3T} \over 4}} \right)} \right]\,\,$$


equals ------------ .
Your input ____
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A zero mean white Gaussian noise having power spectral density $${{{N_0}} \over 2}$$ is passed through an $$ LTI $$ filter whose impulse response $$h(t)$$ is shown in the figure. The variance of the filtered noise at $$t = 4$$ is GATE ECE 2015 Set 2 Communications - Random Signals and Noise Question 36 English
A
$${3 \over 2}{A^2}{N_0}$$
B
$${3 \over 4}{A^2}{N_0}$$
C
$${A^2}{N_0}$$
D
$${1 \over 2}{A^2}{N_0}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12