1

IIT-JEE 1999

MCQ (More than One Correct Answer)
The function $$f\left( x \right) = \int\limits_{ - 1}^x {t\left( {{e^t} - 1} \right)\left( {t - 1} \right){{\left( {t - 2} \right)}^3}\,\,\,{{\left( {t - 3} \right)}^5}} $$ $$dt$$ has a local minimum at $$x=$$
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
2

IIT-JEE 1998

MCQ (More than One Correct Answer)
Let $$h\left( x \right) = f\left( x \right) - {\left( {f\left( x \right)} \right)^2} + {\left( {f\left( x \right)} \right)^3}$$ for every real number $$x$$. Then
A
$$h$$ is increasing whenever $$f$$ is increasing
B
$$h$$ is increasing whenever $$f$$ is decreasing
C
$$h$$ is decreasing whenever $$f$$ is decreasing
D
nothing can be said in general.
3

IIT-JEE 1993

MCQ (More than One Correct Answer)
If $$f\left( x \right) = \left\{ {\matrix{ {3{x^2} + 12x - 1,} & { - 1 \le x \le 2} \cr {37 - x} & {2 < x \le 3} \cr } } \right.$$ then:
A
$$f(x)$$ is increasing on $$\left[ { - 1,2} \right]$$
B
$$f(x)$$ is continues on $$\left[ { - 1,3} \right]$$
C
$$f'(2)$$ does not exist
D
$$f(x)$$ has the maximum value at $$x=2$$
4

IIT-JEE 1986

MCQ (More than One Correct Answer)
If the line $$ax+by+c=0$$ is a normal to the curve $$xy=1$$, then
A
$$a > 0,b > 0$$
B
$$a > 0,b < 0$$
C
$$a < 0,b > 0$$
D
$$a < 0,b < 0$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12