1

IIT-JEE 2009

MCQ (More than One Correct Answer)
For the function $$$f\left( x \right) = x\cos \,{1 \over x},x \ge 1,$$$
A
for at least one $$x$$ in the interval $$\left[ {1,\infty } \right)$$, $$f\left( {x + 2} \right) - f\left( x \right) < 2$$
B
$$\mathop {\lim }\limits_{x \to \infty } f'\left( x \right) = 1$$
C
for all $$x$$ in the interval $$\left[ {1,\infty } \right)f\left( {x + 2} \right) - f\left( x \right) > 2$$
D
$$f'(x)$$ is strictly decreasing in the interval $$\left[ {1,\infty } \right)$$
2

IIT-JEE 2006

MCQ (More than One Correct Answer)
Let $$f\left( x \right) = \left\{ {\matrix{ {{e^x},} & {0 \le x \le 1} \cr {2 - {e^{x - 1}},} & {1 < x \le 2} \cr {x - e,} & {2 < x \le 3} \cr } } \right.$$ and $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,x \in \left[ {1,3} \right]} $$
then $$g(x)$$ has
A
local maxima at $$x=1+In$$ $$2$$ and local minima at $$x=e$$
B
local maxima at $$x=1$$ and local minima at $$x=2$$
C
no local maxima
D
no local minima
3

IIT-JEE 2006

MCQ (More than One Correct Answer)
$$f(x)$$ is cubic polynomial with $$f(2)=18$$ and $$f(1)=-1$$. Also $$f(x)$$ has local maxima at $$x=-1$$ and $$f'(x)$$ has local minima at $$x=0$$, then
A
the distance between $$(-1,2)$$ and (a$$f(a)$$) where $$x=a$$ is the point of local minima is $$2\sqrt 5 $$
B
$$f(x)$$ is increasing for $$x \in \left[ {1,2\sqrt 5 } \right]$$
C
$$f(x)$$ has local minima at $$x=1$$
D
the value of $$f(0)=15$$
4

IIT-JEE 1999

MCQ (More than One Correct Answer)
The function $$f\left( x \right) = \int\limits_{ - 1}^x {t\left( {{e^t} - 1} \right)\left( {t - 1} \right){{\left( {t - 2} \right)}^3}\,\,\,{{\left( {t - 3} \right)}^5}} $$ $$dt$$ has a local minimum at $$x=$$
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12