1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The equation of the locus of the point whose distances from the point $$P$$ and the line $$AB$$ are equal, is

A
$$9{x^2} + {y^2} - 6xy - 54x - 62y + 241 = 0$$
B
$${x^2} + 9{y^2} + 6xy - 54x + 62y - 241 = 0$$
C
$$9{x^2} + 9{y^2} - 6xy - 54x - 62y - 241 = 0$$
D
$${x^2} + {y^2} - 2xy + 27x + 31y - 120 = 0$$
2
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The orthocentre of the triangle $$PAB$$ is

A
$$\left( {5,{8 \over 7}} \right)$$
B
$$\left( {{7 \over 5},{{25} \over 8}} \right)$$
C
$$\left( {{11 \over 5},{{8} \over 5}} \right)$$
D
$$\left( {{8 \over 25},{{7} \over 5}} \right)$$
3
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$- axis $$Q$$. If $$M$$ is the mid point of the line segment $$PQ$$, then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points
A
$$\left( { \pm {{3\sqrt 5 } \over 2},\, \pm {2 \over 7}} \right)$$
B
$$\left( { \pm {{3\sqrt 5 } \over 2},\, \pm \sqrt {{{19} \over 4}} } \right)$$
C
$$\left( { \pm 2\sqrt 3 , \pm {1 \over 7}} \right)$$
D
$$\left( { \pm 2\sqrt 3 , \pm {{4\sqrt 3 } \over 7}} \right)$$
4
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0

Match the conics in Column I with the statements/expressions in Column II :

Column I Column II
(A) Circle (P) The locus of the point ($$h,k$$) for which the line $$hx+ky=1$$ touches the circle $$x^2+y^2=4$$.
(B) Parabola (Q) Points z in the complex plane satisfying $$|z+2|-|z-2|=\pm3$$.
(C) Ellipse (R) Points of the conic have parametric representation $$x = \sqrt 3 \left( {{{1 - {t^2}} \over {1 + {t^2}}}} \right),y = {{2t} \over {1 + {t^2}}}$$
(D) Hyperbola (S) The eccentricity of the conic lies in the interval $$1 \le x \le \infty $$.
(T) Points z in the complex plane satisfying $${\mathop{\rm Re}\nolimits} {(z + 1)^2} = |z{|^2} + 1$$.

A
(A)$$\to$$(P); (B)$$\to$$(S), (T); (C)$$\to$$(R); (D)$$\to$$(R), (S)
B
(A)$$\to$$(P); (B)$$\to$$(S), (T); (C)$$\to$$(R); (D)$$\to$$(Q), (S)
C
(A)$$\to$$(P); (B)$$\to$$(S), (T); (C)$$\to$$(S); (D)$$\to$$(R), (S)
D
(A)$$\to$$(P); (B)$$\to$$(P), (T); (C)$$\to$$(R); (D)$$\to$$(Q), (S)
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12