1
JEE Advanced 2022 Paper 1 Online
+3
-1

Consider the ellipse

$$\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$$$Let$H(\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through$H$parallel to the$y$-axis crosses the ellipse and its auxiliary circle at points$E$and$F$respectively, in the first quadrant. The tangent to the ellipse at the point$E$intersects the positive$x$-axis at a point$G$. Suppose the straight line joining$F$and the origin makes an angle$\phi$with the positive$x$-axis. List-I List-II (I) If$\phi=\frac{\pi}{4}$, then the area of the triangle$F G H$is (P)$\frac{(\sqrt{3}-1)^{4}}{8}$(II) If$\phi=\frac{\pi}{3}$, then the area of the triangle$F G H$is (Q) 1 (III) If$\phi=\frac{\pi}{6}$, then the area of the triangle$F G H$is (R)$\frac{3}{4}$(IV) If$\phi=\frac{\pi}{12}$, then the area of the triangle$F G H$is (S)$\frac{1}{2 \sqrt{3}}$(T)$\frac{3 \sqrt{3}}{2}$The correct option is: A$(\mathrm{I}) \rightarrow(\mathrm{R}) ;(\mathrm{II}) \rightarrow(\mathrm{S}) ;(\mathrm{III}) \rightarrow(\mathrm{Q}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$B (I)$\rightarrow$(R); (II)$\rightarrow(\mathrm{T}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$C (I)$\rightarrow(\mathrm{Q}) ;(\mathrm{II}) \rightarrow(\mathrm{T}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$D (I)$\rightarrow$(Q); (II)$\rightarrow$(S); (III)$\rightarrow$(Q); (IV)$\rightarrow\$ (P)
2
JEE Advanced 2018 Paper 1 Offline
+3
-1
Let S be the circle in the XY-plane defined the equation x2 + y2 = 4.

Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the line segment MN must lie on the curve
A
(x + y)2 = 3xy
B
x2/3 + y2/3 = 24/3
C
x2 + y2 = 2xy
D
x2 + y2 = x2y2
3
JEE Advanced 2016 Paper 2 Offline
+3
-0
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

If the tangents to the ellipse at $$M$$ and $$N$$ meet at $$R$$ and the normal to the parabola at $$M$$ meets the $$x$$-axis at $$Q$$, then the ratio of area of the triangle $$MQR$$ to area of the quadrilateral $$M{F_1}N{F_2}$$is

A
$$3:4$$
B
$$4:5$$
C
$$5:8$$
D
$$2:3$$
4
JEE Advanced 2016 Paper 2 Offline
+3
-0
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

The orthocentre of the triangle $${F_1}MN$$ is

A
$$\left( { - {9 \over {10}},0} \right)$$
B
$$\left( { {2 \over {3}},0} \right)$$
C
$$\left( { {9 \over {10}},0} \right)$$
D
$$\left( {{2 \over 3},\sqrt 6 } \right)$$
EXAM MAP
Medical
NEET