NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2016 Paper 2 Offline

MCQ (Single Correct Answer)
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

The orthocentre of the triangle $${F_1}MN$$ is

A
$$\left( { - {9 \over {10}},0} \right)$$
B
$$\left( { {2 \over {3}},0} \right)$$
C
$$\left( { {9 \over {10}},0} \right)$$
D
$$\left( {{2 \over 3},\sqrt 6 } \right)$$

Explanation

F1(x, 0) and F2(x2, 0) are the foci of the ellipse:

$${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$

Therefore, a2 = 9 and b2 = 8.

$${b^2} = {a^2}(1 - {e^2})$$

$$1 - {e^2} = {8 \over 9} \Rightarrow {e^2} = 1 - {8 \over 9} = {1 \over 9} \Rightarrow e = {1 \over 3}$$

The focus is

$${F_1}\left( { - 3 \times {1 \over 3},0} \right)$$ and $${F_2}\left( {3 \times {1 \over 3},0} \right)$$

That is, F1($$-$$1, 0) and F2(1, 0).

The equation of parabola is

$${y^2} = 4(O{F_2})x$$

$${y^2} = 4x(O{F_2} = 1)$$

The point of intersection of ellipse and parabola is

$${{{x^2}} \over 9} + {{4x} \over 8} = 1 \Rightarrow {{{x^2}} \over 9} + {x \over 2} = 1$$

$$ \Rightarrow 2{x^2} + 9x - 18 = 0$$

$$ \Rightarrow 2{x^2} + 12x - 3x - 18 = 0$$

$$ \Rightarrow 2x(x + 6) - 3(x + 6) = 0$$

$$ \Rightarrow x = {3 \over 2}$$ (x $$-$$6 is rejected)

Now, $${y^2}(4){3 \over 2} = 6$$

$$y = \pm \sqrt 6 $$

That is, the points M and N are, respectively, $$M\left( {{3 \over 2},\sqrt 6 } \right)$$ and $$N\left( {{3 \over 2}, - \sqrt 6 } \right)$$.

Let the orthocenter be (h, k).

The slope of $$OM = {{k - \sqrt 6 } \over {h - (3/2)}}$$

The slope of $$ON = {{\sqrt 6 } \over { - 1 - (3/2)}} = {{ - 2\sqrt 6 } \over 5}$$

Now, $$\left( {{{k - \sqrt 6 } \over {h - (3/2)}}} \right)\left( {{{ - 2\sqrt 6 } \over 5}} \right) = - 1$$

$$2\sqrt 6 k - 12 = 5h - {{15} \over 2}$$

$$5h - 2\sqrt 6 k = {{15} \over 2} - 12 = {{ - 9} \over 2}$$

The slope of $$ON = {{k + \sqrt 6 } \over {h - (3/2)}}$$

The slope of $${F_1}M = {{\sqrt 6 } \over {1 + (3/2)}} = {{2\sqrt 6 } \over 5}$$

$${{k + \sqrt 6 } \over {h - (3/2)}} \times {{2\sqrt 6 } \over 5} = - 1$$

$$2\sqrt 6 k + 12 = - 5h + {{15} \over 2}$$

$$5h + 2\sqrt 6 k = {{15} \over 2} - 12 = {{ - 9} \over 2}$$

$$5h + 2\sqrt 6 k = {{ - 9} \over 2}$$ ....... (1)

$$5h - 2\sqrt 6 k = {{ - 9} \over 2}$$ ........ (2)

Solving Eqs. (1) and (2), we get

$$10h = - 9 \Rightarrow h = {{ - 9} \over {10}}$$ and k = 0

Hence, the orthocentre of the triangle F1MN is $$\left( {{{ - 9} \over {10}},0} \right)$$.

2

JEE Advanced 2016 Paper 2 Offline

MCQ (Single Correct Answer)
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

If the tangents to the ellipse at $$M$$ and $$N$$ meet at $$R$$ and the normal to the parabola at $$M$$ meets the $$x$$-axis at $$Q$$, then the ratio of area of the triangle $$MQR$$ to area of the quadrilateral $$M{F_1}N{F_2}$$is

A
$$3:4$$
B
$$4:5$$
C
$$5:8$$
D
$$2:3$$

Explanation

Equation of tangent at M(3/2, $$\sqrt6$$) to $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$ is

$${3 \over 2}.{x \over 9} + \sqrt 6 .{y \over 8} = 1$$ ....... (i)

which intersect X-axis at (6, 0).

Also, equation of tangent at N(3/2, $$-$$$$\sqrt6$$) is

$${3 \over 2}.{x \over 9} - \sqrt 6 .{y \over 8} = 1$$ ....... (ii)

Eqs. (i) and (ii) intersect on X-axis at R(6, 0). ........ (iii)

Also, normal at $$M(3/2,\sqrt 6 )$$ is

$$y - \sqrt 6 = {{ - \sqrt 6 } \over 2}\left( {x - {3 \over 2}} \right)$$

On solving with y = 0, we get Q(7/2, 0) ....... (iv)

The area of MQR is

$$\left| {{1 \over 2}} \right|\left| {\matrix{ {3/2} & {\sqrt 6 } & 1 \cr 6 & 0 & 1 \cr {7/2} & 0 & 1 \cr } } \right| = \left| {{{\sqrt 6 } \over 2}\left( {6 - {7 \over 2}} \right)} \right| = {{5\sqrt 6 } \over 4}$$

The area of the quadrilateral MF1NF2 is

$$2(\Delta {m_1}{F_1}{F_2}) = 2\sqrt 6 $$

and the required ratio is

$${{5\sqrt 6 } \over {4\,.\,2\sqrt 6 }} = {5 \over 8}$$

3

JEE Advanced 2014 Paper 2 Offline

MCQ (Single Correct Answer)
Let $$a, r, s, t$$ be nonzero real numbers. Let $$P\,\,\left( {a{t^2},2at} \right),\,\,Q,\,\,\,R\,\,\left( {a{r^2},2ar} \right)$$ and $$S\,\,\left( {a{s^2},2as} \right)$$ be distinct points on the parabola $${y^2} = 4ax$$. Suppose that $$PQ$$ is the focal chord and lines $$QR$$ and $$PK$$ are parallel, where $$K$$ is the point $$(2a,0)$$

If $$st=1$$, then the tangent at $$P$$ and the normal at $$S$$ to the parabola meet at a point whose ordinate is

A
$${{{{\left( {{t^2} + 1} \right)}^2}} \over {2{t^3}}}$$
B
$${{a{{\left( {{t^2} + 1} \right)}^2}} \over {2{t^3}}}$$
C
$${{a{{\left( {{t^2} + 1} \right)}^2}} \over {{t^3}}}$$
D
$${{a{{\left( {{t^2} + 2} \right)}^2}} \over {{t^3}}}$$
4

JEE Advanced 2014 Paper 2 Offline

MCQ (Single Correct Answer)
Let $$a, r, s, t$$ be nonzero real numbers. Let $$P\,\,\left( {a{t^2},2at} \right),\,\,Q,\,\,\,R\,\,\left( {a{r^2},2ar} \right)$$ and $$S\,\,\left( {a{s^2},2as} \right)$$ be distinct points on the parabola $${y^2} = 4ax$$. Suppose that $$PQ$$ is the focal chord and lines $$QR$$ and $$PK$$ are parallel, where $$K$$ is the point $$(2a,0)$$

The value of $$r$$ is

A
$$ - {1 \over t}$$
B
$${{{t^2} + 1} \over t}$$
C
$$ {1 \over t}$$
D
$${{{t^2} - 1} \over t}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12