1
JEE Advanced 2015 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

Which of the following values of $$\alpha$$ satisfy the equation

$$\left| {\matrix{ {{{(1 - \alpha )}^2}} & {{{(1 + 2\alpha )}^2}} & {{{(1 + 3\alpha )}^2}} \cr {{{(2 + \alpha )}^2}} & {{{(2 + 2\alpha )}^2}} & {{{(2 + 3\alpha )}^2}} \cr {{{(3 + \alpha )}^2}} & {{{(3 + 2\alpha )}^2}} & {{{(3 + 3\alpha )}^2}} \cr } } \right| = - 648\alpha$$ ?

A
$$-$$4
B
9
C
$$-$$9
D
4
2
JEE Advanced 2014 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let M be a 2 $$\times$$ 2 symmetric matrix with integer entries. Then, M is invertible, if
A
the first column of M is the transpose of the second row of M
B
the second row of M is the transpose of the first column of M
C
M is a diagonal matrix with non-zero entries in the main diagonal
D
the product of entries in the main diagonal of M is not the square of an integer
3
JEE Advanced 2014 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let M and N be two 3 $$\times$$ 3 matrices such that MN = NM. Further, if M $$\ne$$ N2 and M2 = N4, then
A
determinant of (M2 + MN2) is 0
B
there is a 3 $$\times$$ 3 non-zero matrix U such that (M2 + MN2) U is zero matrix
C
determinant of (M2 + MN2) $$\ge$$ 1
D
for a 3 $$\times$$ 3 matrix U, if (M2 + MN2) U equals the zero matrix, then U is the zero matrix
4
JEE Advanced 2013 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2

Let $$\omega$$ be a complex cube root of unity with $$\omega$$ $$\ne$$ 1 and P = [pij] be a n $$\times$$ n matrix with pij = $$\omega$$i + j. Then P2 $$\ne$$ 0, when n = ?

A
57
B
55
C
58
D
56
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination