1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The values of $a$ and $b$, so that the function

$$f(x)= \begin{cases}x+\mathrm{a} \sqrt{2} \sin x & , 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b & , \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ \mathrm{a} \cos 2 x-\mathrm{b} \sin x & , \frac{\pi}{2}< x \leq \pi\end{cases}$$

is continuous for $0 \leq x \leq \pi$, are respectively given by

A
$+\frac{\pi}{12},-\frac{\pi}{6}$
B
  $-\frac{\pi}{6},-\frac{\pi}{12}$
C
$\frac{\pi}{6}, \frac{\pi}{12}$
D
$\frac{\pi}{6},-\frac{\pi}{12}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $x^3-2 x^2+3 x+2$ at $x=2.01$ is

A
8.07
B
8.27
C
8.007
D
8.17
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $(3.978)^{3 / 2}$ is

A
7.096
B
8.096
C
7.934
D
8.934
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin x)\left(8 x^3-\pi^3\right) \cos x}{(\pi-2 x)^4}$$

A
$\frac{\pi^2}{16}$
B
$\frac{3 \pi^2}{16}$
C
$\frac{-3 \pi^2}{16}$
D
$\frac{-\pi^2}{16}$
MHT CET Subjects
EXAM MAP