Indefinite Integration · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

$\int \frac{x^2-4}{x^4+9 x^2+16} \mathrm{dx}=\tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ (where c is a constant of integration), then value of $f(2)$ is

MHT CET 2024 16th May Evening Shift
2

$$\int \cos ^{\frac{-3}{7}} x \cdot \sin ^{\frac{-11}{7}} x d x=$$

MHT CET 2024 16th May Evening Shift
3

$$\int \frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] \mathrm{d} x,$$ where $x>0$ is

MHT CET 2024 16th May Evening Shift
4

$$\int \frac{x^3-7 x+6}{x^2+3 x} \mathrm{~d} x=$$

MHT CET 2024 16th May Evening Shift
5

If $f(x)=\frac{\sin ^2 \pi x}{1+\pi^x}$, then $\int(f(x)+f(-x)) d x$ is equal to

MHT CET 2024 16th May Morning Shift
6

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+\mathrm{k}$ where k is a constant of integration, then $A+B+C$ equals

MHT CET 2024 16th May Morning Shift
7

The integral $\int \frac{2 x^3-1}{x^4+x} \mathrm{~d} x$ is equal to

MHT CET 2024 16th May Morning Shift
8

If $\int \frac{\log \left(t+\sqrt{1+t^2}\right)}{\sqrt{1+t^2}} d t=\frac{1}{2}(g(t))^2+c$ where c is a constant of integration, then $\mathrm{g}(2)$ is equal to

MHT CET 2024 16th May Morning Shift
9

$$\int \operatorname{cosec}(x-a) \cdot \operatorname{cosec} x d x=$$

MHT CET 2024 15th May Evening Shift
10

$\int\left(1+x-\frac{1}{x}\right) \mathrm{e}^{x+\frac{1}{x}} \mathrm{~d} x$ is equal to

MHT CET 2024 15th May Evening Shift
11

If $\int \mathrm{e}^{x^2} \cdot x^3 \mathrm{dx}=\mathrm{e}^{x^2} \mathrm{f}(x)+\mathrm{c}$ and $\mathrm{f}(1)=0$ (where c is a constant of integration), then the value of $f(x)$ is

MHT CET 2024 15th May Evening Shift
12

If $\mathrm{f}(x)=\frac{x}{x+1}, x \neq-1$ and (fof) $(x)=\mathrm{F}(x)$, then $\int \mathrm{F}(x) \mathrm{d} x$ is

MHT CET 2024 15th May Evening Shift
13

The value of $\int \frac{\mathrm{d} x}{7+6 x-x^2}$ is equal to

MHT CET 2024 15th May Morning Shift
14

If $\int \frac{\mathrm{d} x}{1+3 \sin ^2 x}=\frac{1}{2} \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$, where c is a constant of integration, then $\mathrm{f}(x)$ is equal to

MHT CET 2024 15th May Morning Shift
15

The value of $\int \frac{\sec x \cdot \tan x}{9-16 \tan ^2 x} \mathrm{dx}$ is equal to

MHT CET 2024 15th May Morning Shift
16

The value of $\int \frac{d x}{5+4 \sin x}$ is equal to

MHT CET 2024 15th May Morning Shift
17

$$\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}=$$

MHT CET 2024 11th May Evening Shift
18

If $\mathrm{f}(x)=1+x ; \mathrm{g}(x)=\log x$, then $\int \mathrm{g}(\mathrm{f}(x)) \mathrm{d} x$ is equal to

MHT CET 2024 11th May Evening Shift
19

$$\int \cos (\log x) \mathrm{d} x=$$

MHT CET 2024 11th May Evening Shift
20

$$ \int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x=A \sqrt{7-6 x-x^2}+B \sin ^{-1}\left(\frac{x+3}{4}\right)+\mathrm{c} $$ (where c is a constant of integration) then the value of $A+B$ is

MHT CET 2024 11th May Evening Shift
21

$$\int \frac{x \mathrm{~d} x}{(x-1)^2(x+2)}=$$

MHT CET 2024 11th May Morning Shift
22

$$\begin{aligned} & \text { If } \\ & \int(7 x-2) \sqrt{3 x+2} \mathrm{~d} x=\mathrm{A}(3 x+2)^{\frac{5}{2}}+\mathrm{B}(3 x+2)^{\frac{3}{2}}+\mathrm{c} \end{aligned}$$

(where c is a constant of integration), then the values of $A$ and $B$ are respectively

MHT CET 2024 11th May Morning Shift
23

The value of $\int \frac{\cos ^3 x}{\sin ^2 x+\sin x} \mathrm{~d} x$ is

MHT CET 2024 11th May Morning Shift
24

If $x \in[-1,1]$, then the value of $\int \mathrm{e}^{\sin ^{-1} x}\left(\frac{x+\sqrt{1-x^2}}{\sqrt{1-x^2}}\right) \mathrm{d} x$ is

MHT CET 2024 11th May Morning Shift
25

$\int \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=2 \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ where $x>0$ and c is a constant of integration, then $\mathrm{f}(x)$ is

MHT CET 2024 10th May Evening Shift
26

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

MHT CET 2024 10th May Evening Shift
27

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) \mathrm{d} x=$$

MHT CET 2024 10th May Evening Shift
28

If, $\int \frac{d \theta}{\cos ^2 \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{\mathrm{e}}|\mathrm{f}(\theta)|+\mathrm{c}$ (where c is a constant of integration), then the ordered pair $(\lambda,|f(\theta)|)$ is equal to

MHT CET 2024 10th May Morning Shift
29

If $\quad \int(2 x+4) \sqrt{x-1} \mathrm{~d} x=\mathrm{a}(x-1)^{\frac{5}{2}}+\mathrm{b}(x-1)^{\frac{3}{2}}+\mathrm{c}$, (where c is a constant of integration), then the value of $a+b$ is

MHT CET 2024 10th May Morning Shift
30

$$\int \frac{\sqrt{x}}{x+1} d x=$$

MHT CET 2024 10th May Morning Shift
31

$$\int \frac{1+\sin (\log x)}{1+\cos (\log x)} d x=$$

MHT CET 2024 10th May Morning Shift
32

The value of $\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}$ is equal to

MHT CET 2024 9th May Evening Shift
33

$$\int \sqrt{\mathrm{e}^x-1} \mathrm{dx}=$$

MHT CET 2024 9th May Evening Shift
34

The value of $\int \frac{\mathrm{d} x}{(x+1)^{3 / 4}(x-2)^{5 / 4}}$ is equal to

MHT CET 2024 9th May Evening Shift
35

If $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x=a \sin ^{-1}\left(\frac{\sin x+\cos x}{b}\right)+c$ Where c is a constant of integration, then the ordered pair $(\mathrm{a}, \mathrm{b})$ is equal to

MHT CET 2024 9th May Evening Shift
36

If $\int \mathrm{f}(x) \mathrm{d} x=\psi(x)$, then $\int x^5 \mathrm{f}\left(x^3\right) \mathrm{d} x$ is equal to

MHT CET 2024 9th May Morning Shift
37

If $\int \frac{d x}{\sqrt[3]{\sin ^{11} x \cos x}}=-\left(\frac{3}{8} f(x)+\frac{3}{2} g(x)\right)+c$ then

MHT CET 2024 9th May Morning Shift
38

$\int \frac{x^4+x^2+1}{x^2-x+1} d x$ is equal to

MHT CET 2024 9th May Morning Shift
39

The value of $I=\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{dx}$ is

MHT CET 2024 9th May Morning Shift
40

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

MHT CET 2024 4th May Evening Shift
41

If $\int\left(\frac{4 e^x-25}{2 e^x-5}\right) d x=A x+B \log \left(2 e^x-5\right)+c \quad$ (where c is a constant of integration) then

MHT CET 2024 4th May Evening Shift
42

$$\int \tan ^{-1}\left(\frac{1-\sin x}{1+\sin x}\right) d x=$$

MHT CET 2024 4th May Evening Shift
43

$$\int \frac{\left(x^2+1\right)}{(x+1)^2} \mathrm{~d} x=$$

MHT CET 2024 4th May Evening Shift
44

$\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ equal to

MHT CET 2024 4th May Morning Shift
45

The value of $\mathrm{I}=\int \frac{x^2}{(\mathrm{a}+\mathrm{bx})^2} \mathrm{dx}$ is

MHT CET 2024 4th May Morning Shift
46

If $I=\int e^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right) \cos \theta d \theta$, then $I$ is equal to

MHT CET 2024 4th May Morning Shift
47

The integral $\int \sec ^{\frac{2}{3}} x \cdot \operatorname{cosec}^{\frac{4}{3}} x \mathrm{~d} x$ is equal to

MHT CET 2024 4th May Morning Shift
48

$$\int \frac{\operatorname{cosec} x d x}{\cos ^2\left(1+\log \tan \frac{x}{2}\right)}=$$

MHT CET 2024 3rd May Evening Shift
49

The value of $\int \sin \sqrt{x} \mathrm{dx}$ is equal to

MHT CET 2024 3rd May Evening Shift
50

If $\mathrm{f}\left(\frac{x-4}{x-2}\right)=2 x+1, x \in \mathbb{R}-\{1,-2\}$, then $\int \mathrm{f}(x) \mathrm{d} x$ is equal to

MHT CET 2024 3rd May Evening Shift
51

The value of $\int \mathrm{e}^x\left(\frac{1-\sin x}{1-\cos x}\right) \mathrm{dx}$ is equal to

MHT CET 2024 3rd May Evening Shift
52

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+K$, where K is a constant of integration, then the value of $5(A+B+C)$ is equal to

MHT CET 2024 3rd May Morning Shift
53

$$\int \frac{2 x^2-1}{\left(x^2+4\right)\left(x^2-3\right)} d x=$$

MHT CET 2024 3rd May Morning Shift
54

If $\quad \int(2 x+4) \sqrt{x-1} d x=a(x-1)^{5 / 2}+b(x-1)^{3 / 2}+c$ where $c$ is a constant of integration, then the value of $(2 a+b)$ is

MHT CET 2024 3rd May Morning Shift
55

The value of $\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{~d} x$ is equal to

MHT CET 2024 3rd May Morning Shift
56

If $\int \frac{x+1}{\sqrt{2 x-1}} \mathrm{~d} x=\mathrm{f}(x) \sqrt{2 x-1}+\mathrm{c}$, (where c is a constant of integration), then $\mathrm{f}(x)$ is equal to

MHT CET 2024 2nd May Evening Shift
57

The value of $\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

MHT CET 2024 2nd May Evening Shift
58

$\int\left(\mathrm{f}(x) \mathrm{g}^{\prime \prime}(x)-\mathrm{f}^{\prime \prime}(x) \mathrm{g}(x)\right) \mathrm{d} x$ is equal to

MHT CET 2024 2nd May Evening Shift
59

$\int \frac{\log \sqrt{x}}{3 x} \mathrm{dx}$ is equal to

MHT CET 2024 2nd May Evening Shift
60

$$\int 3^{3^x} \cdot 3^x d x=$$

MHT CET 2024 2nd May Morning Shift
61

$$\int \log (1+x)^{1+x} \mathrm{~d} x=$$

MHT CET 2024 2nd May Morning Shift
62

$$\int\left(\frac{x+2}{x+4}\right)^2 \cdot e^x \mathrm{~d} x=$$

MHT CET 2024 2nd May Morning Shift
63

$\int \frac{\mathrm{d} x}{3-2 \cos 2 x}=\frac{\tan ^{-1}(\mathrm{f}(x))}{\sqrt{5}}+\mathrm{c}$, (where c is a constant of integration), then $f(\pi / 4)$ has the value

MHT CET 2024 2nd May Morning Shift
64

The value of $$\int \mathrm{e}^x\left(\frac{x^2+4 x+4}{(x+4)^2}\right) \mathrm{d} x$$ is :

MHT CET 2023 14th May Evening Shift
65

If $$\int \frac{x^2}{\sqrt{1-x}} \mathrm{~d} x=\mathrm{p} \sqrt{1-x}\left(3 x^2+4 x+8\right)+\mathrm{c}$$ where $$\mathrm{c}$$ is a constant of integration, then the value of $$p$$ is

MHT CET 2023 14th May Evening Shift
66

$$\int \frac{\mathrm{d} x}{\cot ^2 x-1}=\frac{1}{\mathrm{~A}} \log |\sec 2 x+\tan 2 x|-\frac{x}{\mathrm{~B}}+\mathrm{c}$$, (where $$\mathrm{c}$$ is constant of integration), then $$\mathrm{A}+\mathrm{B}=$$

MHT CET 2023 14th May Evening Shift
67

If $$I=\int \frac{d x}{\sin (x-a) \sin (x-b)}$$, then I is given by

MHT CET 2023 14th May Evening Shift
68

$$\int \frac{\sin 2 x\left(1-\frac{3}{2} \cos x\right)}{e^{\sin ^2 x+\cos ^3 x}} d x=$$

MHT CET 2023 14th May Morning Shift
69

If $$\int \frac{\cos \theta}{5+7 \sin \theta-2 \cos ^2 \theta} d \theta=A \log _e|f(\theta)|+c$$ (where $$c$$ is a constant of integration), then $$\frac{f(\theta)}{A}$$ can be

MHT CET 2023 14th May Morning Shift
70

$$\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=A \cos x+B \log \mathrm{f}(x)+c$$ (where $$\mathrm{c}$$ is a constant of integration). Then values of $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{f}(x)$$ are

MHT CET 2023 14th May Morning Shift
71

If $$\int \frac{x^3 \mathrm{~d} x}{\sqrt{1+x^2}}=\mathrm{a}\left(1+x^2\right) \sqrt{1+x^2}+\mathrm{b} \sqrt{1+x^2}+\mathrm{c}$$ (where $$\mathrm{c}$$ is a constant of integration), then the value of $$3 \mathrm{ab}$$ is

MHT CET 2023 14th May Morning Shift
72

Let $$f(x)=\int \frac{x^2-3 x+2}{x^4+1} \mathrm{~d} x$$, then function decreases in the interval

MHT CET 2023 14th May Morning Shift
73

If $$\int \frac{\log \left(t+\sqrt{1+t^2}\right)}{\sqrt{1+t^2}} d t=\frac{1}{2}[g(t)]^2+c$$, (where $$c$$ is a constant of integration), then $$g(2)$$ is

MHT CET 2023 13th May Evening Shift
74

$$\int \frac{x-3}{(x-1)^3} e^x d x=$$

MHT CET 2023 13th May Evening Shift
75

$$\int \frac{2+\cos \frac{x}{2}}{x+\sin \frac{x}{2}} d x=$$

MHT CET 2023 13th May Evening Shift
76

If $$I=\int \frac{e^x}{e^{4 x}+e^{2 x}+1} d x$$ and $$J=\int \frac{e^{-x}}{e^{-4 x}+e^{-2 x}+1} d x$$, then for any arbitrary constant $$C$$, than the value of $$J-I$$ equals

MHT CET 2023 13th May Evening Shift
77

If $$\mathrm{I}=\int \frac{2 x-7}{\sqrt{3 x-2}} \mathrm{~d} x$$, then $$\mathrm{I}$$ is given by

MHT CET 2023 13th May Morning Shift
78

$$\int \frac{\log \left(x^2+a^2\right)}{x^2} d x=$$

MHT CET 2023 13th May Morning Shift
79

If $$\int x^5 e^{-4 x^3} \mathrm{~d} x=\frac{1}{48} \mathrm{e}^{-4 x^3} \mathrm{f}(x)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration, then $$\mathrm{f}(x)$$ is given by

MHT CET 2023 13th May Morning Shift
80

If $$\mathrm{f}(x)=\int \frac{x^2 \mathrm{~d} x}{\left(1+x^2\right)\left(1+\sqrt{1+x^2}\right)}$$ and $$\mathrm{f}(0)=0$$, then $$\mathrm{f}(1)$$ is

MHT CET 2023 13th May Morning Shift
81

$$\int \frac{1}{\cos ^3 x \sqrt{\sin 2 x}} d x=$$

MHT CET 2023 12th May Evening Shift
82

If $$\int \frac{\sqrt{1-x^2}}{x^4} \mathrm{~d} x=\mathrm{A}(x)\left(\sqrt{1-x^2}\right)^{\mathrm{m}}+\mathrm{c}$$ for a suitable chosen integer $$\mathrm{m}$$ and a function $$\mathrm{A}(x)$$, where $$\mathrm{c}$$ is a constant of integration, then $$(\mathrm{A}(x))^{\mathrm{m}}$$ equals

MHT CET 2023 12th May Evening Shift
83

$$\int\left(\frac{\tan \left(\frac{1}{x}\right)}{x}\right)^2 d x=$$

MHT CET 2023 12th May Evening Shift
84

$$\int \frac{1}{(x+2)(1+x)^2} d x$$ has the value

MHT CET 2023 12th May Evening Shift
85

$$\int \frac{\operatorname{cosec} x d x}{\cos ^2\left(1+\log \tan \frac{x}{2}\right)}=$$

MHT CET 2023 12th May Morning Shift
86

The integral $$\int \frac{\sin ^2 x \cos ^2 x}{\left(\sin ^5 x+\cos ^3 x \sin ^2 x+\sin ^3 x \cos ^2 x+\cos ^5 x\right)^2} \mathrm{~d} x$$ is equal to

MHT CET 2023 12th May Morning Shift
87

$$\int \frac{x^2+1}{x\left(x^2-1\right)} \mathrm{d} x=$$

MHT CET 2023 12th May Morning Shift
88

If $$\int \cos ^{\frac{3}{5}} x \cdot \sin ^3 x d x=\frac{-1}{m} \cos ^m x+\frac{1}{n} \cos ^n x+c$$, (where $$\mathrm{c}$$ is the constant of integration), then $$(\mathrm{m}, \mathrm{n})=$$

MHT CET 2023 12th May Morning Shift
89

$$\int x \sqrt{\frac{2 \sin \left(x^2+1\right)-\sin 2\left(x^2+1\right)}{2 \sin \left(x^2+1\right)+\sin 2\left(x^2+1\right)}} d x=$$

MHT CET 2023 11th May Evening Shift
90

If $$\int \frac{\cos 8 x+1}{\cot 2 x-\tan 2 x} \mathrm{~d} x=\mathrm{A} \cos 8 x+\mathrm{c}$$, where $$\mathrm{c}$$ is an arbitrary constant, then the value of $$\mathrm{A}$$ is

MHT CET 2023 11th May Evening Shift
91

The value of $$\int(1-\cos x) \cdot \operatorname{cosec}^2 x d x$$ is

MHT CET 2023 11th May Evening Shift
92

If $$\mathrm{I}=\int \sin (\log (x)) \mathrm{d} x$$, then $$\mathrm{I}$$ is given by

MHT CET 2023 11th May Evening Shift
93

$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$

MHT CET 2023 11th May Morning Shift
94

If $$\int \frac{\mathrm{d} x}{x \sqrt{1-x^3}}=\mathrm{k} \log \left(\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then value of $$\mathrm{k}$$ is

MHT CET 2023 11th May Morning Shift
95

$$\int \frac{\log (\cot x)}{\sin 2 x} d x=$$

MHT CET 2023 11th May Morning Shift
96

The value of $$\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$ is

MHT CET 2023 10th May Evening Shift
97

$$\int \frac{5 \tan x}{\tan x-2} \mathrm{~d} x=x+\mathrm{a} \log |\sin x-2 \cos x|+\mathrm{c},$$ (where $$c$$ is a constant of integration), then the value of $$a$$ is

MHT CET 2023 10th May Evening Shift
98

The value of $$\int \frac{\left(x^2-1\right) d x}{x^3 \sqrt{2 x^4-2 x^2+1}}$$ is

MHT CET 2023 10th May Evening Shift
99

$$\int \mathrm{e}^x\left(1-\cot x+\cot ^2 x\right) \mathrm{d} x=$$

MHT CET 2023 10th May Evening Shift
100

If $$\int \sqrt{\frac{x-7}{x-9}} d x=A \sqrt{x^2-16 x+63}+\log \left|(x-8)+\sqrt{x^2-16 x+63}\right|+c,$$

(where $$\mathrm{c}$$ is a constant of integration) then $$\mathrm{A}$$ is

MHT CET 2023 10th May Morning Shift
101

$$\int \frac{1}{7-6 x-x^2} d x=$$

MHT CET 2023 10th May Morning Shift
102

$$\int \frac{d x}{\sin x+\cos x}=$$

MHT CET 2023 10th May Morning Shift
103

If $$\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$, then $$\mathrm{I}$$ is

MHT CET 2023 10th May Morning Shift
104

If $$\int \frac{\sin x}{3+4 \cos ^2 x} \mathrm{~d} x=\mathrm{A} \tan ^{-1}(\mathrm{~B} \cos x)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then the value of $$\mathrm{A}+\mathrm{B}$$ is

MHT CET 2023 9th May Evening Shift
105

$$\int(\sqrt{\tan x}+\sqrt{\cot x}) d x=$$

MHT CET 2023 9th May Evening Shift
106

Let $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ be fixed. If the integral $$\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} \mathrm{d} x=\mathrm{A}(x) \cos 2 \alpha+\mathrm{B}(x) \sin 2 \alpha+\mathrm{c},$$ (where $$\mathrm{c}$$ is a constant of integration), then functions $$\mathrm{A}(x)$$ and $$\mathrm{B}(x)$$ are respectively

MHT CET 2023 9th May Evening Shift
107

$$\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{~d} x=$$

MHT CET 2023 9th May Morning Shift
108

$$\int \frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] \mathrm{d} x, x > 0=$$

MHT CET 2023 9th May Morning Shift
109

If $$ I=\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=P \cos x+Q \log \left|\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}\right| $$ (where $$c$$ is a constant of integration), then values of $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively

MHT CET 2023 9th May Morning Shift
110

$$\int \frac{1}{\sin (x-a) \sin x} d x=$$

MHT CET 2023 9th May Morning Shift
111

If $$f(x)=\sqrt{\tan x}$$ and $$g(x)=\sin x \cdot \cos x$$ then $$\int \frac{f(x)}{g(x)} \mathrm{d} x$$ is equal to (where $$C$$ is a constant of integration)

MHT CET 2022 11th August Evening Shift
112

$$\int \frac{3 x-2}{(x+1)(x-2)^2} \mathrm{~d} x=$$

(where $$C$$ is a constant of integration)

MHT CET 2022 11th August Evening Shift
113

$$\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x=$$

(where $$C$$ is a constant of integration.)

MHT CET 2022 11th August Evening Shift
114

$$\text { If } \int e^{x^2} \cdot x^3 \mathrm{~d} x=e^{x^2} \cdot[f(x)+C]$$ (where $$C$$ is a constant of integration.) and $$f(1)=0$$, then value of $$f(2)$$ will be

MHT CET 2022 11th August Evening Shift
115

$$\int e^x\left(\frac{1+\sin x}{1+\cos x}\right) d x=$$

MHT CET 2021 24th September Evening Shift
116

$$\int \cos ^3 x e^{\log (\sin x)^2} d x=$$

MHT CET 2021 24th September Evening Shift
117

$$\int \frac{d x}{e^x+e^{-x}+2}=$$

MHT CET 2021 24th September Evening Shift
118

$$\int \frac{\mathrm{dx}}{32-2 \mathrm{x}^2}=\mathrm{A} \log (4-\mathrm{x})+\mathrm{B} \log (4+\mathrm{x})+\mathrm{c}$$, then the values of $$\mathrm{A}$$ and $$\mathrm{B}$$ are respectively (where c is a constant of integration)

MHT CET 2021 24th September Morning Shift
119

$$\int \cos ^3 x \cdot e^{\log (\sin x)} d x=$$

MHT CET 2021 24th September Morning Shift
120

If $$\int \frac{(\cos x-\sin x)}{8-\sin 2 x} d x=\frac{1}{p} \log \left[\frac{3+\sin x+\cos x}{3-\sin x-\cos x}\right]+c$$, then $$p=$$ (where $$\mathrm{c}$$ is a constant of integration)

MHT CET 2021 24th September Morning Shift
121

$$\int \sec ^{-1} x d x=$$

MHT CET 2021 23rd September Evening Shift
122

If $$\int \frac{\sqrt{x}}{x(x+1)} d x=k \tan ^{-1} m+c$$, (where c is constant of integration), then

MHT CET 2021 23rd September Evening Shift
123

$$\int \frac{d x}{\cos x \sqrt{\cos 2 x}}=$$

MHT CET 2021 23rd September Evening Shift
124

If $$\int \frac{\sin x}{\sin (x-\alpha)} d x=A x+B \log \sin (x-\alpha)+c$$, then the value of A and B are respectively (where $$\mathrm{c}$$ is a constant of integration)

MHT CET 2021 23th September Morning Shift
125

$$\int \frac{10^{\frac{x}{2}}}{\sqrt{10^{-x}-10^x}} d x=$$

MHT CET 2021 23th September Morning Shift
126

$$\int e^{\left(e^x+x\right)} d x=$$

MHT CET 2021 23th September Morning Shift
127

$$\int \frac{\tan ^4 \sqrt{x} \cdot \sec ^2 \sqrt{x}}{\sqrt{x}} d x=$$

MHT CET 2021 22th September Evening Shift
128

$$\int \cos ^{-1} x d x=$$

MHT CET 2021 22th September Evening Shift
129

$$\int \frac{1}{\cos x+\sqrt{3} \sin x} d x=$$

MHT CET 2021 22th September Evening Shift
130

$$\int {{e^x}\left( {{{x - 1} \over {{x^2}}}} \right)dx = } $$

MHT CET 2021 22th September Morning Shift
131

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x=\quad(\text { where }|x| < 1)$$

MHT CET 2021 22th September Morning Shift
132

$$\int \frac{\sec ^8 x}{\operatorname{cosec} x} d x= $$

MHT CET 2021 22th September Morning Shift
133

$$\int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} d x=$$

MHT CET 2021 21th September Evening Shift
134

$$\int[\sin |\log x|+\cos |\log x|] d x=$$

MHT CET 2021 21th September Evening Shift
135

If $$\int {{{5\tan x} \over {\tan x - 2}}dx = x + a\log |\sin x - 2\cos x| + c} $$, then a = (Where c is constant of integration)

MHT CET 2021 21th September Evening Shift
136

$$\int[1+2 \tan x(\tan x+\sec x)]^{\frac{1}{2}} d x= $$

MHT CET 2021 21th September Morning Shift
137

If $$\int \frac{x^3}{\sqrt{1+x^2}} d x=a\left(1+x^2\right)^{\frac{3}{2}}+b \sqrt{1+x^2}+c$$, then $$a+b=$$, (where $$c$$ is constant of integration)

MHT CET 2021 21th September Morning Shift
138

$$\int e^{\tan x}\left(\sec ^2 x+\sec ^3 x \sin x\right) d x=$$

MHT CET 2021 21th September Morning Shift
139

$$\int \sec ^4 x \cdot \tan ^4 x d x=\frac{\tan ^m x}{m}+\frac{\tan ^n x}{n}+c$$ (where c is constant of integration), then m + n =

MHT CET 2021 20th September Evening Shift
140

$$\int \operatorname{cosec}(x-a) \operatorname{cosec} x d x=$$

MHT CET 2021 20th September Evening Shift
141

$$\int \frac{2 x^2-1}{x^4-x^2-20} d x=$$

MHT CET 2021 20th September Evening Shift
142

$$\int \tan ^{-1}(\sec x+\tan x) d x=$$

MHT CET 2021 20th September Morning Shift
143

If $$\int \frac{1+x^2}{1+x^4} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left[\frac{f(x)}{\sqrt{2}}\right]+c$$, then $$f(x)=$$

MHT CET 2021 20th September Morning Shift
144

$$\int \frac{x+\sin x}{1+\cos x} d x=$$

MHT CET 2021 20th September Morning Shift
145

$$\int \sin ^{-1} x d x=$$

MHT CET 2020 19th October Evening Shift
146

$$\int \log x \cdot(\log x+2) d x=$$

MHT CET 2020 19th October Evening Shift
147

$$\int \frac{d x}{x^2+4 x+13}=$$

MHT CET 2020 19th October Evening Shift
148

$$\int\left[-\frac{\log x-1}{1+(\log x)^2}\right]^2 d x=$$

MHT CET 2020 16th October Evening Shift
149

$$\int \frac{d x}{\cos 2 x-\cos ^2 x}=$$

MHT CET 2020 16th October Evening Shift
150

$$\int \frac{1+2 e^{-x}}{1-2 e^{-x}} d x=$$

MHT CET 2020 16th October Evening Shift
151

If $$\int \frac{\sin \theta}{\sin 3 \theta} d \theta=\frac{1}{2 k} \log \left|\frac{k+\tan \theta}{k-\tan \theta}\right|+c$$, then $$k=$$

MHT CET 2020 16th October Morning Shift
152

If $$\int \sqrt{x-\frac{1}{x}}\left(\frac{x^2+1}{x^2}\right) d x=\frac{2}{3}\left(x-\frac{1}{x}\right)^k+c$$, then value of $$k$$ is

MHT CET 2020 16th October Morning Shift
153

$$\int \cot x \cdot \log [\log (\sin x)] d x=$$

MHT CET 2020 16th October Morning Shift
154

$$\int \log x \cdot[\log (e x)]^{-2} d x=\ldots$$

MHT CET 2019 3rd May Morning Shift
155

If $\int \frac{1}{1-\cot x} d x=A x+B \log |\sin x-\cos x|+c$ then $A+B=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
156

$$\int \frac{d x}{(\sin x+\cos x)(2 \cos x+\sin x)}=$$

MHT CET 2019 3rd May Morning Shift
157

If $$\int \frac{\cos x-\sin x}{8-\sin 2 x} d x=\frac{1}{p} \log \left[\frac{3+\sin x+\cos x}{3-\sin x-\cos x}\right]+c,$$ then $p=$ .............

MHT CET 2019 2nd May Evening Shift
158

$$\begin{aligned} & \text { If } \int \tan (x-\alpha) \tan (x+\alpha) \cdot \tan 2 x d x \\ & =p \log |\sec 2 x|+q \log |\sec (x+\alpha)| \\ & +r \log |\sec (x-\alpha)|+c \text { then } p+q+r=\ldots \ldots \ldots \end{aligned}$$

MHT CET 2019 2nd May Evening Shift
159

$$\int \frac{x^2+1}{x^4-x^2+1} d x=\ldots \ldots$$

MHT CET 2019 2nd May Evening Shift
160

$$\int \frac{\cos x+x \sin x}{x^2+x \cos x} d x=$$ ...........

MHT CET 2019 2nd May Morning Shift
161

$$\int \frac{1}{\left(x^2+1\right)^2} d x=\ldots$$

MHT CET 2019 2nd May Morning Shift
162

$$\int \frac{\sqrt{x^2-a^2}}{x} d x=\ldots \ldots$$

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12