MCQ (Single Correct Answer)
$$\int x \sqrt{\frac{2 \sin \left(x^2+1\right)-\sin 2\left(x^2+1\right)}{2 \sin \left(x^2+1\right)+\sin 2\left(x^2+1\right)}} d x=$$
If $$\int \frac{\cos 8 x+1}{\cot 2 x-\tan 2 x} \mathrm{~d} x=\mathrm{A} \cos 8 x+\mathrm{c}$$, where $$\mathrm{c}$$ is an arbitrary constant, then the...
The value of $$\int(1-\cos x) \cdot \operatorname{cosec}^2 x d x$$ is
If $$\mathrm{I}=\int \sin (\log (x)) \mathrm{d} x$$, then $$\mathrm{I}$$ is given by
$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$
If $$\int \frac{\mathrm{d} x}{x \sqrt{1-x^3}}=\mathrm{k} \log \left(\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right)+\mathrm{c}$$, (where $$\mathrm{c}$$ i...
$$\int \frac{\log (\cot x)}{\sin 2 x} d x=$$
The value of $$\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$ is
$$\int \frac{5 \tan x}{\tan x-2} \mathrm{~d} x=x+\mathrm{a} \log |\sin x-2 \cos x|+\mathrm{c},$$
(where $$c$$ is a constant of integration), then the ...
The value of $$\int \frac{\left(x^2-1\right) d x}{x^3 \sqrt{2 x^4-2 x^2+1}}$$ is
$$\int \mathrm{e}^x\left(1-\cot x+\cot ^2 x\right) \mathrm{d} x=$$
If $$\int \sqrt{\frac{x-7}{x-9}} d x=A \sqrt{x^2-16 x+63}+\log \left|(x-8)+\sqrt{x^2-16 x+63}\right|+c,$$
(where $$\mathrm{c}$$ is a constant of integ...
$$\int \frac{1}{7-6 x-x^2} d x=$$
$$\int \frac{d x}{\sin x+\cos x}=$$
If $$\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$, then $$\mathrm{I}$$ is
If $$\int \frac{\sin x}{3+4 \cos ^2 x} \mathrm{~d} x=\mathrm{A} \tan ^{-1}(\mathrm{~B} \cos x)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of in...
$$\int(\sqrt{\tan x}+\sqrt{\cot x}) d x=$$
Let $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ be fixed. If the integral
$$\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} \mathrm{d} x=\mathrm{A}...
$$\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{~d} x=$$
$$\int \frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] \mathrm{d...
If $$
I=\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=P \cos x+Q \log \left|\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}\right|
$$ (where $$c$$ is a const...
$$\int \frac{1}{\sin (x-a) \sin x} d x=$$
$$\int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} d x=$$
$$\int[\sin |\log x|+\cos |\log x|] d x=$$
If $$\int {{{5\tan x} \over {\tan x - 2}}dx = x + a\log |\sin x - 2\cos x| + c} $$, then a = (Where c is constant of integration)
$$\int[1+2 \tan x(\tan x+\sec x)]^{\frac{1}{2}} d x=
$$
If $$\int \frac{x^3}{\sqrt{1+x^2}} d x=a\left(1+x^2\right)^{\frac{3}{2}}+b \sqrt{1+x^2}+c$$, then $$a+b=$$, (where $$c$$ is constant of integration)...
$$\int e^{\tan x}\left(\sec ^2 x+\sec ^3 x \sin x\right) d x=$$
$$\int \sec ^4 x \cdot \tan ^4 x d x=\frac{\tan ^m x}{m}+\frac{\tan ^n x}{n}+c$$ (where c is constant of integration), then m + n =
$$\int \operatorname{cosec}(x-a) \operatorname{cosec} x d x=$$
$$\int \frac{2 x^2-1}{x^4-x^2-20} d x=$$
$$\int \tan ^{-1}(\sec x+\tan x) d x=$$
If $$\int \frac{1+x^2}{1+x^4} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left[\frac{f(x)}{\sqrt{2}}\right]+c$$, then $$f(x)=$$
$$\int \frac{x+\sin x}{1+\cos x} d x=$$