Indefinite Integration · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

$$ \int \frac{d x}{\cos x(1+\cos x)}= $$

MHT CET 2025 5th May Evening Shift
2

If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ where $a=7^x, b=7^{7^x}, c=7^{7^{7^x}}$ then $\int|A| d x$, (Where $|A|$ is the determinant of the matrix $A$ ) is equal to

MHT CET 2025 5th May Evening Shift
3

$\int \frac{\sin 7 x}{\cos 9 x \cos 2 x} \mathrm{~d} x$ is equal to

MHT CET 2025 5th May Evening Shift
4

$$ \int \frac{\mathrm{d} x}{\sin ^2 x \cos ^2 x}= $$

MHT CET 2025 26th April Evening Shift
5

$$ \int \frac{\mathrm{d} x}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\mathrm{A} x^{\frac{1}{2}}+\mathrm{B} x^{\frac{1}{3}}+\mathrm{C} x^{\frac{1}{6}}+\mathrm{D} \log \left(x^{\frac{1}{6}}+1\right)+\mathrm{k} $$

(where k is the integration constant) then values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are respectively,

MHT CET 2025 26th April Evening Shift
6

$$ \int x^2 \cos x d x= $$

MHT CET 2025 26th April Evening Shift
7

If $\int \frac{\left(x^4+1\right)}{x\left(x^2+1\right)^2} d x=A \log |x|+\frac{B}{1+x^2}+c$, then $\mathrm{A}-\mathrm{B}$ is (where c is the constant of integration)

MHT CET 2025 26th April Morning Shift
8

If $\int \frac{\mathrm{d} x}{x^4+5 x^2+4}=\mathrm{A} \tan ^{-1} x+\mathrm{B} \tan ^{-1} \frac{x}{2}+\mathrm{c}$ where c is a constant of integration, then

MHT CET 2025 26th April Morning Shift
9

$$ \int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} d x= $$

MHT CET 2025 26th April Morning Shift
10

$$ \int \frac{\mathrm{d} x}{(x+\mathrm{a})^{\frac{9}{7}}(x-\mathrm{b})^{\frac{5}{7}}}= $$

MHT CET 2025 25th April Evening Shift
11

$\int \frac{\mathrm{d} x}{x\left(x^3+1\right)}=$

MHT CET 2025 25th April Evening Shift
12

$\int \frac{x^4 \cos \left(\tan ^{-1} x^5\right)}{1+x^{10}} d x$ equals

MHT CET 2025 25th April Evening Shift
13

$$ \int \frac{1}{\mathrm{e}^x+1} \mathrm{~d} x= $$

MHT CET 2025 25th April Morning Shift
14

$\int \mathrm{e}^x\left(\frac{x+5}{(x+6)^2}\right) \mathrm{d} x$ is

MHT CET 2025 25th April Morning Shift
15

$\int \frac{\mathrm{d} x}{3 \cos 2 x+5}$ equals

MHT CET 2025 25th April Morning Shift
16

$$ \int \frac{(5 \sin \theta-2) \cos \theta}{\left(5-\cos ^2 \theta-4 \sin \theta\right)} d \theta= $$

MHT CET 2025 23rd April Evening Shift
17

$$ \int \frac{x}{1+x^4} d x= $$

MHT CET 2025 23rd April Evening Shift
18

$$ \int \sqrt{x^2+3 x} d x= $$

MHT CET 2025 23rd April Evening Shift
19

$$ \int \frac{\mathrm{d} x}{\sqrt{x}+x}= $$

MHT CET 2025 23rd April Morning Shift
20

$$ \int \frac{\mathrm{d} x}{\mathrm{e}^x-1}= $$

MHT CET 2025 23rd April Morning Shift
21

$$ \int\left(\frac{x-3}{x^2+9}\right)^2 d x= $$

MHT CET 2025 23rd April Morning Shift
22

$$ \int \frac{x^3}{x^4+5 x^2+4} d x= $$

MHT CET 2025 22nd April Evening Shift
23

$$ \int \sec ^{\frac{2}{3}} x \cdot \operatorname{cosec}^{\frac{4}{3}} x d x= $$

MHT CET 2025 22nd April Evening Shift
24

$$ \int \mathrm{e}^{2 x} \frac{(\sin 2 x \cos 2 x-1)}{\sin ^2 2 x} \mathrm{~d} x= $$

MHT CET 2025 22nd April Evening Shift
25

$$ \int \frac{\sin 2 x \cos 2 x}{\sqrt{9-\cos ^4 2 x}} d x= $$

MHT CET 2025 22nd April Morning Shift
26

$$ \int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x= $$

MHT CET 2025 22nd April Morning Shift
27

If $\int \frac{2 x^2+3}{\left(x^2-1\right)\left(x^2-4\right)} \mathrm{d} x=\log \left[\left(\frac{x-2}{x+2}\right)^{\mathrm{a}} \cdot\left(\frac{x+1}{x-1}\right)^{\mathrm{b}}\right]+\mathrm{c}$, (where c is the constant of integration) then the value of $a+b$ is equal to

MHT CET 2025 22nd April Morning Shift
28

$$ \int \frac{\sin x}{\sqrt{5 \sin ^2 x+6 \cos ^2 x}} d x $$

MHT CET 2025 21st April Evening Shift
29

$$ \int \cos \left(\frac{x}{16}\right) \cdot \cos \left(\frac{x}{8}\right) \cdot \cos \left(\frac{x}{4}\right) \cdot \sin \left(\frac{x}{16}\right) \mathrm{d} x= $$

MHT CET 2025 21st April Evening Shift
30

$$ \int \frac{x^3}{(x+1)^2} d x= $$

MHT CET 2025 21st April Evening Shift
31

If $\quad \int \frac{3 \sin x \cos x}{4 \sin x+7} \mathrm{~d} x=\mathrm{A} \sin x-\mathrm{Blog}(4 \sin x+7)+\mathrm{c}$ where c is the constant of integration, then the value of $\mathrm{A}+\mathrm{B}$ is equal to

MHT CET 2025 21st April Morning Shift
32

$$ \int \frac{\mathrm{d} x}{x\left(x^2+1\right)}= $$

MHT CET 2025 21st April Morning Shift
33

$\int \sqrt{x^2-6 x-16} \mathrm{~d} x$ equals

MHT CET 2025 21st April Morning Shift
34

$$ \int \log (2+x)^{2+x} d x= $$

MHT CET 2025 20th April Evening Shift
35

$$ \int \frac{\mathrm{e}^{\tan ^{-1} 2 x}}{1+4 x^2}= $$

MHT CET 2025 20th April Evening Shift
36

$$ \int \mathrm{e}^x \frac{(x-1)}{(x+1)^3} \mathrm{~d} x= $$

MHT CET 2025 20th April Evening Shift
37

$$ \int \sin ^5 x \mathrm{~d} x= $$

MHT CET 2025 20th April Morning Shift
38

If $\int \frac{2 x+3}{(x-1)\left(x^2+1\right)} d x$

$$ =\log _e\left\{(x-1)^{\frac{5}{2}}\left(x^2+1\right)^2\right\}-\frac{1}{2} \tan ^{-1} x+\mathrm{A} $$

where A is an arbitrary constant, then the value of $a$ is

MHT CET 2025 20th April Morning Shift
39

$$ \int \frac{d x}{2+\cos x}= $$

MHT CET 2025 20th April Morning Shift
40

$$ \int \frac{x+\sin x}{1+\cos x} d x= $$

MHT CET 2025 19th April Evening Shift
41

If $\int \tan ^4 x \mathrm{~d} x=\mathrm{a} \tan ^3 x+\mathrm{b} \tan x+\mathrm{c} x+\mathrm{k}$ (where k is the constant of integration) then the value of $\mathrm{a}-\mathrm{b}+\mathrm{c}=$

MHT CET 2025 19th April Evening Shift
42

$$ \int \frac{x \mathrm{~d} x}{(x-1)(x-2)}= $$

MHT CET 2025 19th April Evening Shift
43
$$\int \frac{\mathrm{d} x}{2 \mathrm{e}^{2 x}+3 \mathrm{e}^x+1}=$$
MHT CET 2025 19th April Morning Shift
44
$$\int \frac{\mathrm{e}^{2030 \log x}-\mathrm{e}^{2029 \log x}}{\mathrm{e}^{2028 \log x}-\mathrm{e}^{2027 \log x}} \mathrm{~d} x=\ldots$$
MHT CET 2025 19th April Morning Shift
45
 $$\int \frac{\sin 2 x}{(a+b \cos x)^2} d x=$$
MHT CET 2025 19th April Morning Shift
46

$\int \frac{x^2-4}{x^4+9 x^2+16} \mathrm{dx}=\tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ (where c is a constant of integration), then value of $f(2)$ is

MHT CET 2024 16th May Evening Shift
47

$$\int \cos ^{\frac{-3}{7}} x \cdot \sin ^{\frac{-11}{7}} x d x=$$

MHT CET 2024 16th May Evening Shift
48

$$\int \frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] \mathrm{d} x,$$ where $x>0$ is

MHT CET 2024 16th May Evening Shift
49

$$\int \frac{x^3-7 x+6}{x^2+3 x} \mathrm{~d} x=$$

MHT CET 2024 16th May Evening Shift
50

If $f(x)=\frac{\sin ^2 \pi x}{1+\pi^x}$, then $\int(f(x)+f(-x)) d x$ is equal to

MHT CET 2024 16th May Morning Shift
51

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+\mathrm{k}$ where k is a constant of integration, then $A+B+C$ equals

MHT CET 2024 16th May Morning Shift
52

The integral $\int \frac{2 x^3-1}{x^4+x} \mathrm{~d} x$ is equal to

MHT CET 2024 16th May Morning Shift
53

If $\int \frac{\log \left(t+\sqrt{1+t^2}\right)}{\sqrt{1+t^2}} d t=\frac{1}{2}(g(t))^2+c$ where c is a constant of integration, then $\mathrm{g}(2)$ is equal to

MHT CET 2024 16th May Morning Shift
54

$$\int \operatorname{cosec}(x-a) \cdot \operatorname{cosec} x d x=$$

MHT CET 2024 15th May Evening Shift
55

$\int\left(1+x-\frac{1}{x}\right) \mathrm{e}^{x+\frac{1}{x}} \mathrm{~d} x$ is equal to

MHT CET 2024 15th May Evening Shift
56

If $\int \mathrm{e}^{x^2} \cdot x^3 \mathrm{dx}=\mathrm{e}^{x^2} \mathrm{f}(x)+\mathrm{c}$ and $\mathrm{f}(1)=0$ (where c is a constant of integration), then the value of $f(x)$ is

MHT CET 2024 15th May Evening Shift
57

If $\mathrm{f}(x)=\frac{x}{x+1}, x \neq-1$ and (fof) $(x)=\mathrm{F}(x)$, then $\int \mathrm{F}(x) \mathrm{d} x$ is

MHT CET 2024 15th May Evening Shift
58

The value of $\int \frac{\mathrm{d} x}{7+6 x-x^2}$ is equal to

MHT CET 2024 15th May Morning Shift
59

If $\int \frac{\mathrm{d} x}{1+3 \sin ^2 x}=\frac{1}{2} \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$, where c is a constant of integration, then $\mathrm{f}(x)$ is equal to

MHT CET 2024 15th May Morning Shift
60

The value of $\int \frac{\sec x \cdot \tan x}{9-16 \tan ^2 x} \mathrm{dx}$ is equal to

MHT CET 2024 15th May Morning Shift
61

The value of $\int \frac{d x}{5+4 \sin x}$ is equal to

MHT CET 2024 15th May Morning Shift
62

$$\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}=$$

MHT CET 2024 11th May Evening Shift
63

If $\mathrm{f}(x)=1+x ; \mathrm{g}(x)=\log x$, then $\int \mathrm{g}(\mathrm{f}(x)) \mathrm{d} x$ is equal to

MHT CET 2024 11th May Evening Shift
64

$$\int \cos (\log x) \mathrm{d} x=$$

MHT CET 2024 11th May Evening Shift
65

$$ \int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x=A \sqrt{7-6 x-x^2}+B \sin ^{-1}\left(\frac{x+3}{4}\right)+\mathrm{c} $$ (where c is a constant of integration) then the value of $A+B$ is

MHT CET 2024 11th May Evening Shift
66

$$\int \frac{x \mathrm{~d} x}{(x-1)^2(x+2)}=$$

MHT CET 2024 11th May Morning Shift
67

$$\begin{aligned} & \text { If } \\ & \int(7 x-2) \sqrt{3 x+2} \mathrm{~d} x=\mathrm{A}(3 x+2)^{\frac{5}{2}}+\mathrm{B}(3 x+2)^{\frac{3}{2}}+\mathrm{c} \end{aligned}$$

(where c is a constant of integration), then the values of $A$ and $B$ are respectively

MHT CET 2024 11th May Morning Shift
68

The value of $\int \frac{\cos ^3 x}{\sin ^2 x+\sin x} \mathrm{~d} x$ is

MHT CET 2024 11th May Morning Shift
69

If $x \in[-1,1]$, then the value of $\int \mathrm{e}^{\sin ^{-1} x}\left(\frac{x+\sqrt{1-x^2}}{\sqrt{1-x^2}}\right) \mathrm{d} x$ is

MHT CET 2024 11th May Morning Shift
70

$\int \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=2 \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ where $x>0$ and c is a constant of integration, then $\mathrm{f}(x)$ is

MHT CET 2024 10th May Evening Shift
71

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

MHT CET 2024 10th May Evening Shift
72

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) \mathrm{d} x=$$

MHT CET 2024 10th May Evening Shift
73

If, $\int \frac{d \theta}{\cos ^2 \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{\mathrm{e}}|\mathrm{f}(\theta)|+\mathrm{c}$ (where c is a constant of integration), then the ordered pair $(\lambda,|f(\theta)|)$ is equal to

MHT CET 2024 10th May Morning Shift
74

If $\quad \int(2 x+4) \sqrt{x-1} \mathrm{~d} x=\mathrm{a}(x-1)^{\frac{5}{2}}+\mathrm{b}(x-1)^{\frac{3}{2}}+\mathrm{c}$, (where c is a constant of integration), then the value of $a+b$ is

MHT CET 2024 10th May Morning Shift
75

$$\int \frac{\sqrt{x}}{x+1} d x=$$

MHT CET 2024 10th May Morning Shift
76

$$\int \frac{1+\sin (\log x)}{1+\cos (\log x)} d x=$$

MHT CET 2024 10th May Morning Shift
77

The value of $\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}$ is equal to

MHT CET 2024 9th May Evening Shift
78

$$\int \sqrt{\mathrm{e}^x-1} \mathrm{dx}=$$

MHT CET 2024 9th May Evening Shift
79

The value of $\int \frac{\mathrm{d} x}{(x+1)^{3 / 4}(x-2)^{5 / 4}}$ is equal to

MHT CET 2024 9th May Evening Shift
80

If $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x=a \sin ^{-1}\left(\frac{\sin x+\cos x}{b}\right)+c$ Where c is a constant of integration, then the ordered pair $(\mathrm{a}, \mathrm{b})$ is equal to

MHT CET 2024 9th May Evening Shift
81

If $\int \mathrm{f}(x) \mathrm{d} x=\psi(x)$, then $\int x^5 \mathrm{f}\left(x^3\right) \mathrm{d} x$ is equal to

MHT CET 2024 9th May Morning Shift
82

If $\int \frac{d x}{\sqrt[3]{\sin ^{11} x \cos x}}=-\left(\frac{3}{8} f(x)+\frac{3}{2} g(x)\right)+c$ then

MHT CET 2024 9th May Morning Shift
83

$\int \frac{x^4+x^2+1}{x^2-x+1} d x$ is equal to

MHT CET 2024 9th May Morning Shift
84

The value of $I=\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{dx}$ is

MHT CET 2024 9th May Morning Shift
85

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

MHT CET 2024 4th May Evening Shift
86

If $\int\left(\frac{4 e^x-25}{2 e^x-5}\right) d x=A x+B \log \left(2 e^x-5\right)+c \quad$ (where c is a constant of integration) then

MHT CET 2024 4th May Evening Shift
87

$$\int \tan ^{-1}\left(\frac{1-\sin x}{1+\sin x}\right) d x=$$

MHT CET 2024 4th May Evening Shift
88

$$\int \frac{\left(x^2+1\right)}{(x+1)^2} \mathrm{~d} x=$$

MHT CET 2024 4th May Evening Shift
89

$\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ equal to

MHT CET 2024 4th May Morning Shift
90

The value of $\mathrm{I}=\int \frac{x^2}{(\mathrm{a}+\mathrm{bx})^2} \mathrm{dx}$ is

MHT CET 2024 4th May Morning Shift
91

If $I=\int e^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right) \cos \theta d \theta$, then $I$ is equal to

MHT CET 2024 4th May Morning Shift
92

The integral $\int \sec ^{\frac{2}{3}} x \cdot \operatorname{cosec}^{\frac{4}{3}} x \mathrm{~d} x$ is equal to

MHT CET 2024 4th May Morning Shift
93

$$\int \frac{\operatorname{cosec} x d x}{\cos ^2\left(1+\log \tan \frac{x}{2}\right)}=$$

MHT CET 2024 3rd May Evening Shift
94

The value of $\int \sin \sqrt{x} \mathrm{dx}$ is equal to

MHT CET 2024 3rd May Evening Shift
95

If $\mathrm{f}\left(\frac{x-4}{x-2}\right)=2 x+1, x \in \mathbb{R}-\{1,-2\}$, then $\int \mathrm{f}(x) \mathrm{d} x$ is equal to

MHT CET 2024 3rd May Evening Shift
96

The value of $\int \mathrm{e}^x\left(\frac{1-\sin x}{1-\cos x}\right) \mathrm{dx}$ is equal to

MHT CET 2024 3rd May Evening Shift
97

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+K$, where K is a constant of integration, then the value of $5(A+B+C)$ is equal to

MHT CET 2024 3rd May Morning Shift
98

$$\int \frac{2 x^2-1}{\left(x^2+4\right)\left(x^2-3\right)} d x=$$

MHT CET 2024 3rd May Morning Shift
99

If $\quad \int(2 x+4) \sqrt{x-1} d x=a(x-1)^{5 / 2}+b(x-1)^{3 / 2}+c$ where $c$ is a constant of integration, then the value of $(2 a+b)$ is

MHT CET 2024 3rd May Morning Shift
100

The value of $\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{~d} x$ is equal to

MHT CET 2024 3rd May Morning Shift
101

If $\int \frac{x+1}{\sqrt{2 x-1}} \mathrm{~d} x=\mathrm{f}(x) \sqrt{2 x-1}+\mathrm{c}$, (where c is a constant of integration), then $\mathrm{f}(x)$ is equal to

MHT CET 2024 2nd May Evening Shift
102

The value of $\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

MHT CET 2024 2nd May Evening Shift
103

$\int\left(\mathrm{f}(x) \mathrm{g}^{\prime \prime}(x)-\mathrm{f}^{\prime \prime}(x) \mathrm{g}(x)\right) \mathrm{d} x$ is equal to

MHT CET 2024 2nd May Evening Shift
104

$\int \frac{\log \sqrt{x}}{3 x} \mathrm{dx}$ is equal to

MHT CET 2024 2nd May Evening Shift
105

$$\int 3^{3^x} \cdot 3^x d x=$$

MHT CET 2024 2nd May Morning Shift
106

$$\int \log (1+x)^{1+x} \mathrm{~d} x=$$

MHT CET 2024 2nd May Morning Shift
107

$$\int\left(\frac{x+2}{x+4}\right)^2 \cdot e^x \mathrm{~d} x=$$

MHT CET 2024 2nd May Morning Shift
108

$\int \frac{\mathrm{d} x}{3-2 \cos 2 x}=\frac{\tan ^{-1}(\mathrm{f}(x))}{\sqrt{5}}+\mathrm{c}$, (where c is a constant of integration), then $f(\pi / 4)$ has the value

MHT CET 2024 2nd May Morning Shift
109

The value of $$\int \mathrm{e}^x\left(\frac{x^2+4 x+4}{(x+4)^2}\right) \mathrm{d} x$$ is :

MHT CET 2023 14th May Evening Shift
110

If $$\int \frac{x^2}{\sqrt{1-x}} \mathrm{~d} x=\mathrm{p} \sqrt{1-x}\left(3 x^2+4 x+8\right)+\mathrm{c}$$ where $$\mathrm{c}$$ is a constant of integration, then the value of $$p$$ is

MHT CET 2023 14th May Evening Shift
111

$$\int \frac{\mathrm{d} x}{\cot ^2 x-1}=\frac{1}{\mathrm{~A}} \log |\sec 2 x+\tan 2 x|-\frac{x}{\mathrm{~B}}+\mathrm{c}$$, (where $$\mathrm{c}$$ is constant of integration), then $$\mathrm{A}+\mathrm{B}=$$

MHT CET 2023 14th May Evening Shift
112

If $$I=\int \frac{d x}{\sin (x-a) \sin (x-b)}$$, then I is given by

MHT CET 2023 14th May Evening Shift
113

$$\int \frac{\sin 2 x\left(1-\frac{3}{2} \cos x\right)}{e^{\sin ^2 x+\cos ^3 x}} d x=$$

MHT CET 2023 14th May Morning Shift
114

If $$\int \frac{\cos \theta}{5+7 \sin \theta-2 \cos ^2 \theta} d \theta=A \log _e|f(\theta)|+c$$ (where $$c$$ is a constant of integration), then $$\frac{f(\theta)}{A}$$ can be

MHT CET 2023 14th May Morning Shift
115

$$\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=A \cos x+B \log \mathrm{f}(x)+c$$ (where $$\mathrm{c}$$ is a constant of integration). Then values of $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{f}(x)$$ are

MHT CET 2023 14th May Morning Shift
116

If $$\int \frac{x^3 \mathrm{~d} x}{\sqrt{1+x^2}}=\mathrm{a}\left(1+x^2\right) \sqrt{1+x^2}+\mathrm{b} \sqrt{1+x^2}+\mathrm{c}$$ (where $$\mathrm{c}$$ is a constant of integration), then the value of $$3 \mathrm{ab}$$ is

MHT CET 2023 14th May Morning Shift
117

Let $$f(x)=\int \frac{x^2-3 x+2}{x^4+1} \mathrm{~d} x$$, then function decreases in the interval

MHT CET 2023 14th May Morning Shift
118

If $$\int \frac{\log \left(t+\sqrt{1+t^2}\right)}{\sqrt{1+t^2}} d t=\frac{1}{2}[g(t)]^2+c$$, (where $$c$$ is a constant of integration), then $$g(2)$$ is

MHT CET 2023 13th May Evening Shift
119

$$\int \frac{x-3}{(x-1)^3} e^x d x=$$

MHT CET 2023 13th May Evening Shift
120

$$\int \frac{2+\cos \frac{x}{2}}{x+\sin \frac{x}{2}} d x=$$

MHT CET 2023 13th May Evening Shift
121

If $$I=\int \frac{e^x}{e^{4 x}+e^{2 x}+1} d x$$ and $$J=\int \frac{e^{-x}}{e^{-4 x}+e^{-2 x}+1} d x$$, then for any arbitrary constant $$C$$, than the value of $$J-I$$ equals

MHT CET 2023 13th May Evening Shift
122

If $$\mathrm{I}=\int \frac{2 x-7}{\sqrt{3 x-2}} \mathrm{~d} x$$, then $$\mathrm{I}$$ is given by

MHT CET 2023 13th May Morning Shift
123

$$\int \frac{\log \left(x^2+a^2\right)}{x^2} d x=$$

MHT CET 2023 13th May Morning Shift
124

If $$\int x^5 e^{-4 x^3} \mathrm{~d} x=\frac{1}{48} \mathrm{e}^{-4 x^3} \mathrm{f}(x)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration, then $$\mathrm{f}(x)$$ is given by

MHT CET 2023 13th May Morning Shift
125

If $$\mathrm{f}(x)=\int \frac{x^2 \mathrm{~d} x}{\left(1+x^2\right)\left(1+\sqrt{1+x^2}\right)}$$ and $$\mathrm{f}(0)=0$$, then $$\mathrm{f}(1)$$ is

MHT CET 2023 13th May Morning Shift
126

$$\int \frac{1}{\cos ^3 x \sqrt{\sin 2 x}} d x=$$

MHT CET 2023 12th May Evening Shift
127

If $$\int \frac{\sqrt{1-x^2}}{x^4} \mathrm{~d} x=\mathrm{A}(x)\left(\sqrt{1-x^2}\right)^{\mathrm{m}}+\mathrm{c}$$ for a suitable chosen integer $$\mathrm{m}$$ and a function $$\mathrm{A}(x)$$, where $$\mathrm{c}$$ is a constant of integration, then $$(\mathrm{A}(x))^{\mathrm{m}}$$ equals

MHT CET 2023 12th May Evening Shift
128

$$\int\left(\frac{\tan \left(\frac{1}{x}\right)}{x}\right)^2 d x=$$

MHT CET 2023 12th May Evening Shift
129

$$\int \frac{1}{(x+2)(1+x)^2} d x$$ has the value

MHT CET 2023 12th May Evening Shift
130

$$\int \frac{\operatorname{cosec} x d x}{\cos ^2\left(1+\log \tan \frac{x}{2}\right)}=$$

MHT CET 2023 12th May Morning Shift
131

The integral $$\int \frac{\sin ^2 x \cos ^2 x}{\left(\sin ^5 x+\cos ^3 x \sin ^2 x+\sin ^3 x \cos ^2 x+\cos ^5 x\right)^2} \mathrm{~d} x$$ is equal to

MHT CET 2023 12th May Morning Shift
132

$$\int \frac{x^2+1}{x\left(x^2-1\right)} \mathrm{d} x=$$

MHT CET 2023 12th May Morning Shift
133

If $$\int \cos ^{\frac{3}{5}} x \cdot \sin ^3 x d x=\frac{-1}{m} \cos ^m x+\frac{1}{n} \cos ^n x+c$$, (where $$\mathrm{c}$$ is the constant of integration), then $$(\mathrm{m}, \mathrm{n})=$$

MHT CET 2023 12th May Morning Shift
134

$$\int x \sqrt{\frac{2 \sin \left(x^2+1\right)-\sin 2\left(x^2+1\right)}{2 \sin \left(x^2+1\right)+\sin 2\left(x^2+1\right)}} d x=$$

MHT CET 2023 11th May Evening Shift
135

If $$\int \frac{\cos 8 x+1}{\cot 2 x-\tan 2 x} \mathrm{~d} x=\mathrm{A} \cos 8 x+\mathrm{c}$$, where $$\mathrm{c}$$ is an arbitrary constant, then the value of $$\mathrm{A}$$ is

MHT CET 2023 11th May Evening Shift
136

The value of $$\int(1-\cos x) \cdot \operatorname{cosec}^2 x d x$$ is

MHT CET 2023 11th May Evening Shift
137

If $$\mathrm{I}=\int \sin (\log (x)) \mathrm{d} x$$, then $$\mathrm{I}$$ is given by

MHT CET 2023 11th May Evening Shift
138

$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$

MHT CET 2023 11th May Morning Shift
139

If $$\int \frac{\mathrm{d} x}{x \sqrt{1-x^3}}=\mathrm{k} \log \left(\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then value of $$\mathrm{k}$$ is

MHT CET 2023 11th May Morning Shift
140

$$\int \frac{\log (\cot x)}{\sin 2 x} d x=$$

MHT CET 2023 11th May Morning Shift
141

The value of $$\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$ is

MHT CET 2023 10th May Evening Shift
142

$$\int \frac{5 \tan x}{\tan x-2} \mathrm{~d} x=x+\mathrm{a} \log |\sin x-2 \cos x|+\mathrm{c},$$ (where $$c$$ is a constant of integration), then the value of $$a$$ is

MHT CET 2023 10th May Evening Shift
143

The value of $$\int \frac{\left(x^2-1\right) d x}{x^3 \sqrt{2 x^4-2 x^2+1}}$$ is

MHT CET 2023 10th May Evening Shift
144

$$\int \mathrm{e}^x\left(1-\cot x+\cot ^2 x\right) \mathrm{d} x=$$

MHT CET 2023 10th May Evening Shift
145

If $$\int \sqrt{\frac{x-7}{x-9}} d x=A \sqrt{x^2-16 x+63}+\log \left|(x-8)+\sqrt{x^2-16 x+63}\right|+c,$$

(where $$\mathrm{c}$$ is a constant of integration) then $$\mathrm{A}$$ is

MHT CET 2023 10th May Morning Shift
146

$$\int \frac{1}{7-6 x-x^2} d x=$$

MHT CET 2023 10th May Morning Shift
147

$$\int \frac{d x}{\sin x+\cos x}=$$

MHT CET 2023 10th May Morning Shift
148

If $$\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$, then $$\mathrm{I}$$ is

MHT CET 2023 10th May Morning Shift
149

If $$\int \frac{\sin x}{3+4 \cos ^2 x} \mathrm{~d} x=\mathrm{A} \tan ^{-1}(\mathrm{~B} \cos x)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then the value of $$\mathrm{A}+\mathrm{B}$$ is

MHT CET 2023 9th May Evening Shift
150

$$\int(\sqrt{\tan x}+\sqrt{\cot x}) d x=$$

MHT CET 2023 9th May Evening Shift
151

Let $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ be fixed. If the integral $$\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} \mathrm{d} x=\mathrm{A}(x) \cos 2 \alpha+\mathrm{B}(x) \sin 2 \alpha+\mathrm{c},$$ (where $$\mathrm{c}$$ is a constant of integration), then functions $$\mathrm{A}(x)$$ and $$\mathrm{B}(x)$$ are respectively

MHT CET 2023 9th May Evening Shift
152

$$\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{~d} x=$$

MHT CET 2023 9th May Morning Shift
153

$$\int \frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] \mathrm{d} x, x > 0=$$

MHT CET 2023 9th May Morning Shift
154

If $$ I=\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=P \cos x+Q \log \left|\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}\right| $$ (where $$c$$ is a constant of integration), then values of $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively

MHT CET 2023 9th May Morning Shift
155

$$\int \frac{1}{\sin (x-a) \sin x} d x=$$

MHT CET 2023 9th May Morning Shift
156

If $$f(x)=\sqrt{\tan x}$$ and $$g(x)=\sin x \cdot \cos x$$ then $$\int \frac{f(x)}{g(x)} \mathrm{d} x$$ is equal to (where $$C$$ is a constant of integration)

MHT CET 2022 11th August Evening Shift
157

$$\int \frac{3 x-2}{(x+1)(x-2)^2} \mathrm{~d} x=$$

(where $$C$$ is a constant of integration)

MHT CET 2022 11th August Evening Shift
158

$$\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x=$$

(where $$C$$ is a constant of integration.)

MHT CET 2022 11th August Evening Shift
159

$$\text { If } \int e^{x^2} \cdot x^3 \mathrm{~d} x=e^{x^2} \cdot[f(x)+C]$$ (where $$C$$ is a constant of integration.) and $$f(1)=0$$, then value of $$f(2)$$ will be

MHT CET 2022 11th August Evening Shift
160

$$\int e^x\left(\frac{1+\sin x}{1+\cos x}\right) d x=$$

MHT CET 2021 24th September Evening Shift
161

$$\int \cos ^3 x e^{\log (\sin x)^2} d x=$$

MHT CET 2021 24th September Evening Shift
162

$$\int \frac{d x}{e^x+e^{-x}+2}=$$

MHT CET 2021 24th September Evening Shift
163

$$\int \frac{\mathrm{dx}}{32-2 \mathrm{x}^2}=\mathrm{A} \log (4-\mathrm{x})+\mathrm{B} \log (4+\mathrm{x})+\mathrm{c}$$, then the values of $$\mathrm{A}$$ and $$\mathrm{B}$$ are respectively (where c is a constant of integration)

MHT CET 2021 24th September Morning Shift
164

$$\int \cos ^3 x \cdot e^{\log (\sin x)} d x=$$

MHT CET 2021 24th September Morning Shift
165

If $$\int \frac{(\cos x-\sin x)}{8-\sin 2 x} d x=\frac{1}{p} \log \left[\frac{3+\sin x+\cos x}{3-\sin x-\cos x}\right]+c$$, then $$p=$$ (where $$\mathrm{c}$$ is a constant of integration)

MHT CET 2021 24th September Morning Shift
166

$$\int \sec ^{-1} x d x=$$

MHT CET 2021 23rd September Evening Shift
167

If $$\int \frac{\sqrt{x}}{x(x+1)} d x=k \tan ^{-1} m+c$$, (where c is constant of integration), then

MHT CET 2021 23rd September Evening Shift
168

$$\int \frac{d x}{\cos x \sqrt{\cos 2 x}}=$$

MHT CET 2021 23rd September Evening Shift
169

If $$\int \frac{\sin x}{\sin (x-\alpha)} d x=A x+B \log \sin (x-\alpha)+c$$, then the value of A and B are respectively (where $$\mathrm{c}$$ is a constant of integration)

MHT CET 2021 23th September Morning Shift
170

$$\int \frac{10^{\frac{x}{2}}}{\sqrt{10^{-x}-10^x}} d x=$$

MHT CET 2021 23th September Morning Shift
171

$$\int e^{\left(e^x+x\right)} d x=$$

MHT CET 2021 23th September Morning Shift
172

$$\int \frac{\tan ^4 \sqrt{x} \cdot \sec ^2 \sqrt{x}}{\sqrt{x}} d x=$$

MHT CET 2021 22th September Evening Shift
173

$$\int \cos ^{-1} x d x=$$

MHT CET 2021 22th September Evening Shift
174

$$\int \frac{1}{\cos x+\sqrt{3} \sin x} d x=$$

MHT CET 2021 22th September Evening Shift
175

$$\int {{e^x}\left( {{{x - 1} \over {{x^2}}}} \right)dx = } $$

MHT CET 2021 22th September Morning Shift
176

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x=\quad(\text { where }|x| < 1)$$

MHT CET 2021 22th September Morning Shift
177

$$\int \frac{\sec ^8 x}{\operatorname{cosec} x} d x= $$

MHT CET 2021 22th September Morning Shift
178

$$\int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} d x=$$

MHT CET 2021 21th September Evening Shift
179

$$\int[\sin |\log x|+\cos |\log x|] d x=$$

MHT CET 2021 21th September Evening Shift
180

If $$\int {{{5\tan x} \over {\tan x - 2}}dx = x + a\log |\sin x - 2\cos x| + c} $$, then a = (Where c is constant of integration)

MHT CET 2021 21th September Evening Shift
181

$$\int[1+2 \tan x(\tan x+\sec x)]^{\frac{1}{2}} d x= $$

MHT CET 2021 21th September Morning Shift
182

If $$\int \frac{x^3}{\sqrt{1+x^2}} d x=a\left(1+x^2\right)^{\frac{3}{2}}+b \sqrt{1+x^2}+c$$, then $$a+b=$$, (where $$c$$ is constant of integration)

MHT CET 2021 21th September Morning Shift
183

$$\int e^{\tan x}\left(\sec ^2 x+\sec ^3 x \sin x\right) d x=$$

MHT CET 2021 21th September Morning Shift
184

$$\int \sec ^4 x \cdot \tan ^4 x d x=\frac{\tan ^m x}{m}+\frac{\tan ^n x}{n}+c$$ (where c is constant of integration), then m + n =

MHT CET 2021 20th September Evening Shift
185

$$\int \operatorname{cosec}(x-a) \operatorname{cosec} x d x=$$

MHT CET 2021 20th September Evening Shift
186

$$\int \frac{2 x^2-1}{x^4-x^2-20} d x=$$

MHT CET 2021 20th September Evening Shift
187

$$\int \tan ^{-1}(\sec x+\tan x) d x=$$

MHT CET 2021 20th September Morning Shift
188

If $$\int \frac{1+x^2}{1+x^4} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left[\frac{f(x)}{\sqrt{2}}\right]+c$$, then $$f(x)=$$

MHT CET 2021 20th September Morning Shift
189

$$\int \frac{x+\sin x}{1+\cos x} d x=$$

MHT CET 2021 20th September Morning Shift
190

$$\int \sin ^{-1} x d x=$$

MHT CET 2020 19th October Evening Shift
191

$$\int \log x \cdot(\log x+2) d x=$$

MHT CET 2020 19th October Evening Shift
192

$$\int \frac{d x}{x^2+4 x+13}=$$

MHT CET 2020 19th October Evening Shift
193

$$\int\left[-\frac{\log x-1}{1+(\log x)^2}\right]^2 d x=$$

MHT CET 2020 16th October Evening Shift
194

$$\int \frac{d x}{\cos 2 x-\cos ^2 x}=$$

MHT CET 2020 16th October Evening Shift
195

$$\int \frac{1+2 e^{-x}}{1-2 e^{-x}} d x=$$

MHT CET 2020 16th October Evening Shift
196

If $$\int \frac{\sin \theta}{\sin 3 \theta} d \theta=\frac{1}{2 k} \log \left|\frac{k+\tan \theta}{k-\tan \theta}\right|+c$$, then $$k=$$

MHT CET 2020 16th October Morning Shift
197

If $$\int \sqrt{x-\frac{1}{x}}\left(\frac{x^2+1}{x^2}\right) d x=\frac{2}{3}\left(x-\frac{1}{x}\right)^k+c$$, then value of $$k$$ is

MHT CET 2020 16th October Morning Shift
198

$$\int \cot x \cdot \log [\log (\sin x)] d x=$$

MHT CET 2020 16th October Morning Shift
199

$$\int \log x \cdot[\log (e x)]^{-2} d x=\ldots$$

MHT CET 2019 3rd May Morning Shift
200

If $\int \frac{1}{1-\cot x} d x=A x+B \log |\sin x-\cos x|+c$ then $A+B=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
201

$$\int \frac{d x}{(\sin x+\cos x)(2 \cos x+\sin x)}=$$

MHT CET 2019 3rd May Morning Shift
202

If $$\int \frac{\cos x-\sin x}{8-\sin 2 x} d x=\frac{1}{p} \log \left[\frac{3+\sin x+\cos x}{3-\sin x-\cos x}\right]+c,$$ then $p=$ .............

MHT CET 2019 2nd May Evening Shift
203

$$\begin{aligned} & \text { If } \int \tan (x-\alpha) \tan (x+\alpha) \cdot \tan 2 x d x \\ & =p \log |\sec 2 x|+q \log |\sec (x+\alpha)| \\ & +r \log |\sec (x-\alpha)|+c \text { then } p+q+r=\ldots \ldots \ldots \end{aligned}$$

MHT CET 2019 2nd May Evening Shift
204

$$\int \frac{x^2+1}{x^4-x^2+1} d x=\ldots \ldots$$

MHT CET 2019 2nd May Evening Shift
205

$$\int \frac{\cos x+x \sin x}{x^2+x \cos x} d x=$$ ...........

MHT CET 2019 2nd May Morning Shift
206

$$\int \frac{1}{\left(x^2+1\right)^2} d x=\ldots$$

MHT CET 2019 2nd May Morning Shift
207

$$\int \frac{\sqrt{x^2-a^2}}{x} d x=\ldots \ldots$$

MHT CET 2019 2nd May Morning Shift
EXAM MAP