Linear Programming · Mathematics · MHT CET
Start PracticeMCQ (Single Correct Answer)
MHT CET 2024 16th May Morning Shift
Maximum value of $Z=100 x+70 y$
Subject to $2 x \geq 4, y \leq 3, x+y \leq 8, x, y \geq 0$ is
MHT CET 2024 15th May Evening Shift
The graphical solution set of the system of inequations $2 x+3 y \leq 6, x+4 y \geq 4, x \geq 0, y \geq 0$ is given by
...
MHT CET 2024 15th May Morning Shift
The region represented by the inequations $2 x+3 y \leqslant 18, x+y \geqslant 10, x \geqslant 0, y \geqslant 0$ is
MHT CET 2024 11th May Evening Shift
A production unit makes special type of metal chips by combining copper and brass. The standard weight of the chip must be at least 5 gms. The basic i...
MHT CET 2024 11th May Morning Shift
For the following shaded region, the linear constraints are
...
MHT CET 2024 10th May Evening Shift
The graphical solution set of the system of inequations $x+y \geq 1,7 x+9 y \leq 63, y \leq 5, x \leq 6$, $x \geq 0, y \geq 0$ is represented by
...
MHT CET 2024 10th May Morning Shift
The function to be maximized is given by $Z=3 x+2 y$. The feasible region for this function is the shaded region given below, then the linear constrai...
MHT CET 2024 9th May Evening Shift
The maximum value of $z=4 x+2 y$, subject to the constraints $3 x+4 y \geqslant 12, x+y \leqslant 5, x, y \geqslant 0$ is
MHT CET 2024 9th May Morning Shift
The maximum value of $z=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$
MHT CET 2024 4th May Evening Shift
The maximum value of the objective function $\mathrm{z}=4 x+6 y$ subject to $3 x+2 y \leq 12, x+y \geq 4, x$, $y \geq 0$ is
MHT CET 2024 4th May Morning Shift
The shaded region in the following figure is the solution set of the inequations
...
MHT CET 2024 3rd May Evening Shift
The maximum value of $\mathrm{Z}=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$
MHT CET 2024 3rd May Morning Shift
The shaded area in the figure below is the solution set for a certain linear programming problem, then the linear constraints are given by
...
MHT CET 2024 2nd May Evening Shift
The shaded region in the following figure is the solution set of the inequations
...
MHT CET 2024 2nd May Morning Shift
The point, at which the maximum value of $10 x+6 y$ subject to the constraints $x+y \leq 12$, $2 x+y \leq 20, x \geq 0, y \geq 0$ occurs, is
MHT CET 2023 14th May Evening Shift
The shaded region in the following figure represents the solution set for a certain linear programming problem. Then linear constraints for this regio...
MHT CET 2023 14th May Morning Shift
The solution set of the inequalities $$4 x+3 y \leq 60, y \geq 2 x, x \geq 3, x, y \geq 0$$ is represented by region
...
MHT CET 2023 13th May Evening Shift
The shaded area in the given figure is a solution set for some system of inequations. The maximum value of the function $$z=10 x+25 y$$ subject to the...
MHT CET 2023 13th May Morning Shift
If feasible region is as shown in the figure, then related inequalities are
...
MHT CET 2023 12th May Evening Shift
The maximum value of $$z=7 x+8 y$$ subject to the constraints $$x+y \leq 20, y \geq 5, x \leq 10, x \geq 0, y \geq 0$$ is
MHT CET 2023 12th May Morning Shift
For a feasible region OCDBO given below, the maximum value of the objective function $$z=3 x+4 y$$ is
...
MHT CET 2023 11th May Evening Shift
The maximum value of $$z=3 x+5 y$$ subject to the constraints $$3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0$$, is
MHT CET 2023 11th May Morning Shift
For the following shaded area, the linear constraints except $$x,y \ge 0$$ are
...
MHT CET 2023 10th May Evening Shift
The shaded area in the figure given below is a solution set of a system of inequations. The minimum value of objective function $$3 x+5 y$$, subject t...
MHT CET 2023 10th May Morning Shift
The vertices of the feasible region for the constraints $$x+y \leq 4, x \leq 2, y \leq 1, x+y \geq 1, x, y \geq 0$$ are
MHT CET 2023 9th May Evening Shift
The graphical solution set for the system of inequations
$$x-2 y \leq 2,5 x+2 y \geq 10,4 x+5 y \leq 20, x \geq 0,
y \geq 0$$ is given by
...
MHT CET 2023 9th May Morning Shift
If feasible region is as shown in the figure, then the related inequalities are
...
MHT CET 2022 11th August Evening Shift
Maximum value of $$Z=5 x+2 y$$, subject to $$2 x-y \geq 2, x+2 y \leq 8$$ and $$x, y \geq 0$$ is
MHT CET 2021 24th September Evening Shift
The region represented by the inequalities $$x \geq 6, y \geq 3,2 x+y \geq 10, x \geq 0, y \geq 0$$ is
MHT CET 2021 24th September Morning Shift
The common region of the solutions of the inequations $$x+2 y \geq 4,2 x-y \leq 6$$ and $$x, y>0$$ is
MHT CET 2021 23rd September Evening Shift
The minimum value of the objective function $$z=4 x+6 y$$ subject to $$x+2 y \geq 80,3 x+y \geq 75, x, y \geq 0$$ is
MHT CET 2021 23th September Morning Shift
The maximum value of the objective function $$z=2 x+3 y$$ subject to the constraints $$x+y \leq 5,2 x+y \geq 4$$ and $$x \geq 0, y \geq 0$$ is
MHT CET 2021 22th September Evening Shift
The common region of the solution of the inequations $$x+y \geq 5, y \leq 4, x \geq 2, x, y \geq 0$$ is
MHT CET 2021 22th September Morning Shift
The maximum value of $$z=10 x+25 y$$ subject to $$0 \leq x \leq 3,0 \leq y \leq 3, x+y \leq 5$$ occurs at the point.
MHT CET 2021 21th September Evening Shift
The objective function $$z=4 x+5 y$$ subjective to $$2 x+y \geq 7 ; 2 x+3 y \leq 15 ; y \leq 3, x \geq 0 ; y \geq 0$$ has minimum value at the point....
MHT CET 2021 21th September Morning Shift
The shaded figure given below is the solution set for the linear inequations. Choose the correct option.
...
MHT CET 2021 20th September Evening Shift
The solution set for the system of linear inequations $$x+y \geq 1 ; 7 x+9 y \leq 63 ; y \leq 5 ; x \leq 6, x \geq 0$$ and $$y \geq 0$$ is represented...
MHT CET 2021 20th September Morning Shift
The shaded part of the given figure indicates the feasible region. Then the constraints are
...
MHT CET 2020 19th October Evening Shift
The LPP to maximize $Z=x+y$, subject to $x+y \leq 1,2 x+2 y \geq 6, x \geq 0, y \geq 0$ has
MHT CET 2020 16th October Evening Shift
The maximum value of $$Z=3 x+5 y$$, subject to $$3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0$$ is
MHT CET 2020 16th October Morning Shift
The minimum value of $$Z=5 x+8 y$$ subject to $$x+y \geq 5,0 \leq x \leq 4, y \geq 2, x \geq 0, y \geq 0$$ is
MHT CET 2019 3rd May Morning Shift
If $z=a x+b y ; a, b>0$ subject to $x \leq 2, y \leq 2, x+y \geq 3, x \geq 0, y \geq 0$ has minimum value at $(2,1)$ only, then......
MHT CET 2019 3rd May Morning Shift
The maximum value of $Z=5 x+4 y$, Subject to $y \leq 2 x, x \leq 2 y, x+y \leq 3, x \geq 0, y \geq 0$ is ........
MHT CET 2019 2nd May Evening Shift
The maximum value of $z=6 x+8 y$ subject to $x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq 0$ is $\ldots \ldots$.
MHT CET 2019 2nd May Evening Shift
For L.P.P, maximize $z=4 x_1+2 x_2$ subject to $3 x_1+2 x_2 \geq 9, x_1-x_2 \leq 3, x_1 \geq 0, x_2 \geq 0$ has
MHT CET 2019 2nd May Morning Shift
The maximum value of $z=9 x+11 y$ subject to $3 x+2 y \leq 12,2 x+3 y \leq 12, x \geq 0, y \geq 0$ is $\ldots \ldots$.
MHT CET 2019 2nd May Morning Shift
The minimum value of $z=10 x+25 y$ subject to $0 \leq x \leq 3,0 \leq y \leq 3, x+y \geq 5$ is $\ldots$