Linear Programming · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

A manufacturing company produces two items, A and B. Each toy should be processed by two machines, I and II. Machine I can be operated for maximum 10 hours 40 minutes. It takes 20 minutes for an item of A and 15 minutes for B. Machine II can be operated for a total time at 8 hours 20 minutes. It takes 5 minutes for an item A and 8 minutes for B . The profit per item of $A$ is $Rs 25$ and per item of $B$ is ₹ 18 . The formulation of an L.P.P. to maximize the profit (where $x$ is number of items A and $y$ is the number of item $B$ ) is

MHT CET 2025 26th April Evening Shift
2

The solution for minimizing the function $\mathrm{z}=x+y$ under an L.P.P. with constraints $x+y \geq 2, x+2 y \leq 8, y \leq 3, x, y \geq 0$ is

MHT CET 2025 26th April Morning Shift
3

In L.P.P., the maximum value of objective function $\mathrm{Z}=6 x+3 y$ subject to constraints $x+y \leq 5, x+2 y \geq 4,4 x+y \leq 12, x, y \geq 0$ is

MHT CET 2025 25th April Evening Shift
4
The solution set of the constraints $|x-y| \leq 1, x, y \geq 0$ is
MHT CET 2025 25th April Morning Shift
5
The difference between the maximum value and minimum value of objective function $\mathrm{z}=3 x+5 y$ subject to constraints $x+3 y \leq 60$, $x+y \geq 10, x-y \geq 0, x, y \geq 0$ is
MHT CET 2025 23rd April Evening Shift
6

The graph with correct feasible region of L.P.P. for the constraints $2 x+y \leqslant 10, y \leqslant x, y \leqslant 2, x, y \geqslant 0$ is …

MHT CET 2025 23rd April Morning Shift
7

The correct constraints for the given feasible region are ….

MHT CET 2025 22nd April Evening Shift Mathematics - Linear Programming Question 7 English
MHT CET 2025 22nd April Evening Shift
8

If the difference between the maximum and minimum values of the objective function $\mathrm{z}=7 x-8 y$, subject to the constraints $x+y \leqslant 20, y \geqslant 5, x, y \geqslant 0$ is $5 \mathrm{k}+200$, then the value of k is

MHT CET 2025 22nd April Morning Shift
9

The solution set for minimizing the function $\mathrm{z}=x+y$ with constraints $x+y \geqslant 2, x+2 y \leqslant 8, y \leqslant 3, x, y \geqslant 0$ contains

MHT CET 2025 21st April Evening Shift
10

The L.P.P. , minimize $z=30 x+20 y, x+y \leq 8$, $x+2 y \geq 4,6 x+4 y \geq 12, x \geqslant 0, y \geqslant 0$ has

MHT CET 2025 21st April Morning Shift
11

A scholarship amount is given by $\mathrm{z}=550 x+300 y$ and is to be distributed among $x$ boys and $y$ girls. From the graph given below the maximum amount of scholarship is __________

MHT CET 2025 20th April Evening Shift Mathematics - Linear Programming Question 11 English
MHT CET 2025 20th April Evening Shift
12

The shaded region in the following figure represents a solution set of

MHT CET 2025 20th April Morning Shift Mathematics - Linear Programming Question 13 English
MHT CET 2025 20th April Morning Shift
13

The feasible region for the constraints $x-2 \leqslant y, x \geqslant y-1, x \geqslant 2, y \leqslant 4, x, y \geqslant 0$, is _________

MHT CET 2025 19th April Evening Shift
14

The feasible region represented by the given constraints $2 x+3 y \geq 12,-x+y \leq 3, x \leq 4, y \geq 3$ is denoted by

MHT CET 2025 19th April Morning Shift Mathematics - Linear Programming Question 12 English

MHT CET 2025 19th April Morning Shift
15

The shaded area in the given figure is a solution set for some system of inequalities. The maximum value of the function $\mathrm{z}=4 x+3 y$ subject to linear constraints given by the system is

MHT CET 2024 16th May Evening Shift Mathematics - Linear Programming Question 15 English

MHT CET 2024 16th May Evening Shift
16

Maximum value of $Z=100 x+70 y$ Subject to $2 x \geq 4, y \leq 3, x+y \leq 8, x, y \geq 0$ is

MHT CET 2024 16th May Morning Shift
17

The graphical solution set of the system of inequations $2 x+3 y \leq 6, x+4 y \geq 4, x \geq 0, y \geq 0$ is given by

MHT CET 2024 15th May Evening Shift Mathematics - Linear Programming Question 17 English

MHT CET 2024 15th May Evening Shift
18

The region represented by the inequations $2 x+3 y \leqslant 18, x+y \geqslant 10, x \geqslant 0, y \geqslant 0$ is

MHT CET 2024 15th May Morning Shift
19

A production unit makes special type of metal chips by combining copper and brass. The standard weight of the chip must be at least 5 gms. The basic ingredients i.e. copper and brass cost ₹8 and ₹ 5 per gm. The durability considerations dictate that the metal chip must no contain more than 4 gms of brass and should contain minimum 2 gms of copper. Then the minimum cost of the metal chip satisfying the above conditions is

MHT CET 2024 11th May Evening Shift
20

For the following shaded region, the linear constraints are

MHT CET 2024 11th May Morning Shift Mathematics - Linear Programming Question 20 English

MHT CET 2024 11th May Morning Shift
21

The graphical solution set of the system of inequations $x+y \geq 1,7 x+9 y \leq 63, y \leq 5, x \leq 6$, $x \geq 0, y \geq 0$ is represented by

MHT CET 2024 10th May Evening Shift Mathematics - Linear Programming Question 22 English

MHT CET 2024 10th May Evening Shift
22

The function to be maximized is given by $Z=3 x+2 y$. The feasible region for this function is the shaded region given below, then the linear constraints for this region are given by

MHT CET 2024 10th May Morning Shift Mathematics - Linear Programming Question 21 English

MHT CET 2024 10th May Morning Shift
23

The maximum value of $z=4 x+2 y$, subject to the constraints $3 x+4 y \geqslant 12, x+y \leqslant 5, x, y \geqslant 0$ is

MHT CET 2024 9th May Evening Shift
24

The maximum value of $z=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$

MHT CET 2024 9th May Morning Shift
25

The maximum value of the objective function $\mathrm{z}=4 x+6 y$ subject to $3 x+2 y \leq 12, x+y \geq 4, x$, $y \geq 0$ is

MHT CET 2024 4th May Evening Shift
26

The shaded region in the following figure is the solution set of the inequations

MHT CET 2024 4th May Morning Shift Mathematics - Linear Programming Question 26 English

MHT CET 2024 4th May Morning Shift
27

The maximum value of $\mathrm{Z}=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$

MHT CET 2024 3rd May Evening Shift
28

The shaded area in the figure below is the solution set for a certain linear programming problem, then the linear constraints are given by

MHT CET 2024 3rd May Morning Shift Mathematics - Linear Programming Question 28 English

MHT CET 2024 3rd May Morning Shift
29

The shaded region in the following figure is the solution set of the inequations

MHT CET 2024 2nd May Evening Shift Mathematics - Linear Programming Question 29 English

MHT CET 2024 2nd May Evening Shift
30

The point, at which the maximum value of $10 x+6 y$ subject to the constraints $x+y \leq 12$, $2 x+y \leq 20, x \geq 0, y \geq 0$ occurs, is

MHT CET 2024 2nd May Morning Shift
31

The shaded region in the following figure represents the solution set for a certain linear programming problem. Then linear constraints for this region are given by

MHT CET 2023 14th May Evening Shift Mathematics - Linear Programming Question 46 English

MHT CET 2023 14th May Evening Shift
32

The solution set of the inequalities $$4 x+3 y \leq 60, y \geq 2 x, x \geq 3, x, y \geq 0$$ is represented by region

MHT CET 2023 14th May Morning Shift Mathematics - Linear Programming Question 48 English

MHT CET 2023 14th May Morning Shift
33

The shaded area in the given figure is a solution set for some system of inequations. The maximum value of the function $$z=10 x+25 y$$ subject to the linear constraints given by the system is

MHT CET 2023 13th May Evening Shift Mathematics - Linear Programming Question 47 English

MHT CET 2023 13th May Evening Shift
34

If feasible region is as shown in the figure, then related inequalities are

MHT CET 2023 13th May Morning Shift Mathematics - Linear Programming Question 49 English
MHT CET 2023 13th May Morning Shift
35

The maximum value of $$z=7 x+8 y$$ subject to the constraints $$x+y \leq 20, y \geq 5, x \leq 10, x \geq 0, y \geq 0$$ is

MHT CET 2023 12th May Evening Shift
36

For a feasible region OCDBO given below, the maximum value of the objective function $$z=3 x+4 y$$ is

MHT CET 2023 12th May Morning Shift Mathematics - Linear Programming Question 50 English

MHT CET 2023 12th May Morning Shift
37

The maximum value of $$z=3 x+5 y$$ subject to the constraints $$3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0$$, is

MHT CET 2023 11th May Evening Shift
38

For the following shaded area, the linear constraints except $$x,y \ge 0$$ are

MHT CET 2023 11th May Morning Shift Mathematics - Linear Programming Question 54 English

MHT CET 2023 11th May Morning Shift
39

The shaded area in the figure given below is a solution set of a system of inequations. The minimum value of objective function $$3 x+5 y$$, subject to the linear constraints given by this system of inequations is

MHT CET 2023 10th May Evening Shift Mathematics - Linear Programming Question 55 English

MHT CET 2023 10th May Evening Shift
40

The vertices of the feasible region for the constraints $$x+y \leq 4, x \leq 2, y \leq 1, x+y \geq 1, x, y \geq 0$$ are

MHT CET 2023 10th May Morning Shift
41

The graphical solution set for the system of inequations $$x-2 y \leq 2,5 x+2 y \geq 10,4 x+5 y \leq 20, x \geq 0, y \geq 0$$ is given by

MHT CET 2023 9th May Evening Shift Mathematics - Linear Programming Question 56 English

MHT CET 2023 9th May Evening Shift
42

If feasible region is as shown in the figure, then the related inequalities are

MHT CET 2023 9th May Morning Shift Mathematics - Linear Programming Question 57 English

MHT CET 2023 9th May Morning Shift
43

Maximum value of $$Z=5 x+2 y$$, subject to $$2 x-y \geq 2, x+2 y \leq 8$$ and $$x, y \geq 0$$ is

MHT CET 2022 11th August Evening Shift
44

The region represented by the inequalities $$x \geq 6, y \geq 3,2 x+y \geq 10, x \geq 0, y \geq 0$$ is

MHT CET 2021 24th September Evening Shift
45

The common region of the solutions of the inequations $$x+2 y \geq 4,2 x-y \leq 6$$ and $$x, y>0$$ is

MHT CET 2021 24th September Morning Shift
46

The minimum value of the objective function $$z=4 x+6 y$$ subject to $$x+2 y \geq 80,3 x+y \geq 75, x, y \geq 0$$ is

MHT CET 2021 23rd September Evening Shift
47

The maximum value of the objective function $$z=2 x+3 y$$ subject to the constraints $$x+y \leq 5,2 x+y \geq 4$$ and $$x \geq 0, y \geq 0$$ is

MHT CET 2021 23th September Morning Shift
48

The common region of the solution of the inequations $$x+y \geq 5, y \leq 4, x \geq 2, x, y \geq 0$$ is

MHT CET 2021 22th September Evening Shift
49

The maximum value of $$z=10 x+25 y$$ subject to $$0 \leq x \leq 3,0 \leq y \leq 3, x+y \leq 5$$ occurs at the point.

MHT CET 2021 22th September Morning Shift
50

The objective function $$z=4 x+5 y$$ subjective to $$2 x+y \geq 7 ; 2 x+3 y \leq 15 ; y \leq 3, x \geq 0 ; y \geq 0$$ has minimum value at the point.

MHT CET 2021 21th September Evening Shift
51

The shaded figure given below is the solution set for the linear inequations. Choose the correct option.

MHT CET 2021 21th September Morning Shift Mathematics - Linear Programming Question 60 English

MHT CET 2021 21th September Morning Shift
52

The solution set for the system of linear inequations $$x+y \geq 1 ; 7 x+9 y \leq 63 ; y \leq 5 ; x \leq 6, x \geq 0$$ and $$y \geq 0$$ is represented graphically in the figure. What is the correct option?

MHT CET 2021 20th September Evening Shift
53

The shaded part of the given figure indicates the feasible region. Then the constraints are

MHT CET 2021 20th September Morning Shift Mathematics - Linear Programming Question 62 English

MHT CET 2021 20th September Morning Shift
54

The LPP to maximize $Z=x+y$, subject to $x+y \leq 1,2 x+2 y \geq 6, x \geq 0, y \geq 0$ has

MHT CET 2020 19th October Evening Shift
55

The maximum value of $$Z=3 x+5 y$$, subject to $$3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0$$ is

MHT CET 2020 16th October Evening Shift
56

The minimum value of $$Z=5 x+8 y$$ subject to $$x+y \geq 5,0 \leq x \leq 4, y \geq 2, x \geq 0, y \geq 0$$ is

MHT CET 2020 16th October Morning Shift
57

If $z=a x+b y ; a, b>0$ subject to $x \leq 2, y \leq 2, x+y \geq 3, x \geq 0, y \geq 0$ has minimum value at $(2,1)$ only, then......

MHT CET 2019 3rd May Morning Shift
58

The maximum value of $Z=5 x+4 y$, Subject to $y \leq 2 x, x \leq 2 y, x+y \leq 3, x \geq 0, y \geq 0$ is ........

MHT CET 2019 3rd May Morning Shift
59

The maximum value of $z=6 x+8 y$ subject to $x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq 0$ is $\ldots \ldots$.

MHT CET 2019 2nd May Evening Shift
60

For L.P.P, maximize $z=4 x_1+2 x_2$ subject to $3 x_1+2 x_2 \geq 9, x_1-x_2 \leq 3, x_1 \geq 0, x_2 \geq 0$ has

MHT CET 2019 2nd May Evening Shift
61

The maximum value of $z=9 x+11 y$ subject to $3 x+2 y \leq 12,2 x+3 y \leq 12, x \geq 0, y \geq 0$ is $\ldots \ldots$.

MHT CET 2019 2nd May Morning Shift
62

The minimum value of $z=10 x+25 y$ subject to $0 \leq x \leq 3,0 \leq y \leq 3, x+y \geq 5$ is $\ldots$

MHT CET 2019 2nd May Morning Shift
EXAM MAP