1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 0} \frac{63^x-9^x-7^x+1}{\sqrt{2}-\sqrt{1+\cos x}}=\ldots \ldots $$

A
$\frac{4 \sqrt{2}}{\log 7 \cdot \log 9}$
B
$4 \sqrt{2} \log 7 \cdot \log 9$
C
$4 \sqrt{2} \log 63$
D
$\frac{\log 7 \cdot \log 9}{4 \sqrt{2}}$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable function having $\mathrm{f}(3)=3, \mathrm{f}^{\prime}(3)=\frac{1}{27}$ and $\mathrm{g}(x)= \begin{cases}\int_3^{\mathrm{f}(x)} \frac{3 \mathrm{t}^2}{x-3} \mathrm{dt}, & \text { if } x \neq 3 \\ \mathrm{~K}, & \text { if } x=3\end{cases}$ is continuous at $x=3$, then $\mathrm{K}=$

A
1
B
3
C
$\frac{1}{3}$
D
9
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If Rolle's theorem holds for the function $x^3+\mathrm{a} x^2+\mathrm{b} x, 1 \leq x \leq 2$ at the point $\frac{4}{3}$, then the values of $a$ and $b$ are respectively

A
5,8
B
$-8,5$
C
$8,-5$
D
$-5,8$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{\sin \left(\pi \cos ^2 x\right)}{3 x^2}, x \neq 0$ is continuous at $x=0$ then $\mathrm{f}(0)=$

A
0
B
$\frac{\pi}{3}$
C
$\frac{-\pi}{3}$
D
$\frac{3}{\pi}$
MHT CET Subjects
EXAM MAP