1
MHT CET 2021 21th September Evening Shift
+2
-0

\begin{aligned} & \text { } f(x)=\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x} \text {, if } 1 \leq x<0 \\ & =\frac{2 x+1}{x-2} \quad \text {, if } 0 \leq x \leq 1 \\ \end{aligned}

is continuous in the interval $$[-1,1]$$, then $$p=$$

A
1
B
$$-$$1
C
$$\frac{-1}{2}$$
D
$$\frac{1}{2}$$
2
MHT CET 2021 21th September Evening Shift
+2
-0

If $$\lim _\limits{x \rightarrow 5} \frac{x^k-5^k}{x-5}=500$$, then the value of $$k$$, where $$k \in N$$ is

A
5
B
3
C
4
D
6
3
MHT CET 2021 21th September Morning Shift
+2
-0

\begin{aligned} & \text { If the function } \mathrm{f}(\mathrm{x})=1+\sin \frac{\pi}{2}, \quad-\infty<\mathrm{x} \leq 1 \\ & =\mathrm{ax}+\mathrm{b}, \quad 1<\mathrm{x}<3 \\ & =6 \tan \frac{x \pi}{12}, \quad 3 \leq x<6 \\ \end{aligned}

is continuous in $$(-\infty, 6)$$, then the values of $$\mathrm{a}$$ and $$\mathrm{b}$$ are respectively.

A
1, 1
B
2, 1
C
0, 2
D
2, 0
4
MHT CET 2021 21th September Morning Shift
+2
-0

$$\lim _\limits{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^2+x-3}=$$

A
$$\frac{1}{5}$$
B
$$\frac{1}{10}$$
C
$$\frac{-1}{10}$$
D
$$\frac{-1}{5}$$
EXAM MAP
Medical
NEET