Three Dimensional Geometry · Mathematics · MHT CET
Start PracticeMCQ (Single Correct Answer)
MHT CET 2024 16th May Evening Shift
The co-ordinates of the foot of the perpendicular from the point $(0,2,3)$ on the line $\frac{x+3}{5}=\frac{y+1}{2}=\frac{z+4}{3}$ is
MHT CET 2024 16th May Evening Shift
A line having direction ratios $1,-4,2$ intersects the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ ...
MHT CET 2024 16th May Evening Shift
A plane makes positive intercepts of unit length on each of $X$ and $Y$ axis. If it passes through the point $(-1,1,2)$ and makes angle $\theta$ with ...
MHT CET 2024 16th May Evening Shift
The equation of plane through the point $(2,-1,-3)$ and parallel to lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\...
MHT CET 2024 16th May Morning Shift
The equation of the plane, passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $Y$-axis is
MHT CET 2024 16th May Morning Shift
A line with positive direction cosines passes through the point $\mathrm{P}(2,-1,2)$ and makes equal angles with co-ordinate axes. The line meets the ...
MHT CET 2024 16th May Morning Shift
If the distance between the plane Ax-2y+z $=\mathrm{d}$ and the plane containing the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}...
MHT CET 2024 16th May Morning Shift
The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is
MHT CET 2024 15th May Evening Shift
A line makes $45^{\circ}$ angle with positive X -axis and makes equal angles with positive Y -axis ad Z-axis respectively, then the sum of the three a...
MHT CET 2024 15th May Evening Shift
If the lines $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k has the val...
MHT CET 2024 15th May Evening Shift
The vector equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$, which is perpendicular to the plane $x-...
MHT CET 2024 15th May Evening Shift
The equation of a line passing through the point $(2,-1,1)$ and parallel to the line joining the points $\hat{i}+2 \hat{j}+2 \hat{k}$ and $-\hat{i}+4 ...
MHT CET 2024 15th May Evening Shift
The foot of the perpendicular drawn from origin to a plane is $\mathrm{M}(2,1,-2)$, then vector equation of the plane is
MHT CET 2024 15th May Morning Shift
Let $\mathrm{L}_1: \frac{x+2}{5}=\frac{y-3}{2}=\frac{\mathrm{z}-6}{1}$ and $\mathrm{L}_2: \frac{x-3}{4}=\frac{y+2}{3}=\frac{z-3}{5}$ be the given line...
MHT CET 2024 15th May Morning Shift
The perpendicular distance from the origin to the plane containing the two lines $\frac{x+2}{3}=\frac{y-2}{5}=\frac{z+5}{7}$ and $\frac{x-1}{1}=\frac{...
MHT CET 2024 15th May Morning Shift
Let $P(2,1,5)$ be a point in space and $Q$ be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the va...
MHT CET 2024 15th May Morning Shift
The centroid of tetrahedron with vertices $\mathrm{P}(5,-7,0), \mathrm{Q}(\mathrm{a}, 5,3), \mathrm{R}(4,-6, b)$ and $\mathrm{S}(6, \mathrm{c}, 2)$ is...
MHT CET 2024 11th May Evening Shift
A variable plane passes through the fixed point $(3,2,1)$ and meets $X, Y$ and $Z$ axes at points $A$, B and C respectively. A plane is drawn parallel...
MHT CET 2024 11th May Evening Shift
The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=\mathrm{z}$ is __________ units.
MHT CET 2024 11th May Evening Shift
If for some $\alpha \in \mathbb{R}$, the lines $\mathrm{L}_1: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\mathrm{L}_2: \frac{x+2}{\alpha}=\frac{...
MHT CET 2024 11th May Evening Shift
Let $P(3,2,6)$ be a point in space and $Q$ be a point on the line $\bar{r}=\hat{i}-\hat{j}+2 \hat{k}+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the valu...
MHT CET 2024 11th May Morning Shift
The perpendicular distance of the origin from the plane $2 x+y-2 z-18=0$ is
MHT CET 2024 11th May Morning Shift
The plane $2 x+3 y+4 z=1$ meets $X$-axis in $A$, Y -axis in B and Z -axis in C . Then the centroid of $\triangle A B C$ is
MHT CET 2024 11th May Morning Shift
If the lines $\frac{x+1}{-10}=\frac{y+k}{-1}=\frac{z-4}{1} \quad$ and $\frac{x+10}{-1}=\frac{y+1}{-3}=\frac{z-1}{4}$ intersect each other, then the va...
MHT CET 2024 11th May Morning Shift
The equation of the line passing through the point $(3,1,2)$ and perpendicular to the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{...
MHT CET 2024 11th May Morning Shift
The area of the triangle with vertices $(1,2,0)$, $(1,0,2)$ and $(0,3,1)$ is
MHT CET 2024 11th May Morning Shift
If the volume of tetrahedron whose vertices are $A \equiv(1,-6,10), B \equiv(-1,-3,7), C \equiv(5,-1, k)$ and $D \equiv(7,-4,7)$ is 11 cu . units, the...
MHT CET 2024 10th May Evening Shift
The vector equation of the plane passing through the point $\mathrm{A}(1,2,-1)$ and parallel to the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\...
MHT CET 2024 10th May Evening Shift
The shortest distance between lines $\bar{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\bar{r}=(2 \hat{i}-\hat{j}+2 \hat{...
MHT CET 2024 10th May Evening Shift
If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then the value of k...
MHT CET 2024 10th May Evening Shift
The projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{CD}}$, where $A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$ and $\mathrm{D} \...
MHT CET 2024 10th May Evening Shift
The equation of the plane through the point $(2,-1,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-...
MHT CET 2024 10th May Morning Shift
Equation of the plane, through the points $(-1,2,-2)$ and $(-1,3,2)$ and perpendicular to $y \mathrm{z}$ - plane, is
MHT CET 2024 10th May Morning Shift
If the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{-1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k is equal t...
MHT CET 2024 10th May Morning Shift
If the line, $\frac{x-3}{2}=\frac{y+2}{1}=\frac{z+4}{3}$ lies in the plane, $\ell x+m y-z=9$, then $\ell^2+m^2$ is equal to
MHT CET 2024 10th May Morning Shift
If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$, then $(\alpha, \beta)=$
MHT CET 2024 9th May Evening Shift
A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,2,1)$. The distance of the plane from the point $(2,3,4...
MHT CET 2024 9th May Evening Shift
The value of m such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z+m}{2}$ lies in the plane $2 x-4 y+z=7$ is
MHT CET 2024 9th May Evening Shift
A line with positive direction cosines passes through the point $\mathrm{P}(2,1,2)$ and makes equal angles with the coordinate axes. The line meets th...
MHT CET 2024 9th May Evening Shift
Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle $\alpha$ with the positive X -axis, then $\cos \a...
MHT CET 2024 9th May Morning Shift
The equation of the plane, passing through the point $(1,1,1)$ and perpendicular to the planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$, is
MHT CET 2024 9th May Morning Shift
The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$ having normal perpendicular to both the lines $\frac{x-1}{1}...
MHT CET 2024 9th May Morning Shift
The value of m , such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-m}{2}$ lies in the plane $2 x-4 y+z=7$, is
MHT CET 2024 9th May Morning Shift
The length of the perpendicular from the point $\mathrm{A}(1,-2,-3)$ on the line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z+1}{-2}$ is
MHT CET 2024 4th May Evening Shift
If the points $(1,-1, \lambda)$ and $(-3,0,1)$ are equidistant from the plane $3 x-4 y-12 z+13=0$, then the sum of all possible values of $\lambda$ is...
MHT CET 2024 4th May Evening Shift
Let P be a plane passing through the points $(2,1,0),(4,1,1)$ and $(5,0,1)$ and $R$ be the point $(2,1,6)$. Then image of $R$ in the plane $P$ is...
MHT CET 2024 4th May Evening Shift
The equation of the plane, passing through the point $(-1,2,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y-2}{2}=\frac{z}{-4}$ and $\frac{x}{2}...
MHT CET 2024 4th May Evening Shift
The co-ordinates of the point where the line through $\mathrm{A}(3,4,1)$ and $\mathrm{B}(5,1,6)$ crosses the $x y$-plane are
MHT CET 2024 4th May Evening Shift
The Cartesian equation of a line is $2 x-2=3 y+1=6 z-2$, then the vector equation of the line is
MHT CET 2024 4th May Morning Shift
The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} \quad$ and $\frac{x-1}{\mathrm{k}}=\frac{y-4}{2}=\frac{\mathrm{z}-5}{1}$ are coplanar if
MHT CET 2024 4th May Morning Shift
Let $\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and
$\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ be two given lines. Then t...
MHT CET 2024 4th May Morning Shift
Let $a, b \in R$. If the mirror image of the point $\mathrm{p}(\mathrm{a}, 6,9)$ w.r.t. line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, b,-...
MHT CET 2024 4th May Morning Shift
A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,...
MHT CET 2024 3rd May Evening Shift
Let $\mathrm{L}_1$ $\frac{x+1}{3}=\frac{y+2}{2}=\frac{z+1}{1}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y+2}{1}=\frac{z-3}{3}$ be the given lines. Then ...
MHT CET 2024 3rd May Evening Shift
The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is
MHT CET 2024 3rd May Evening Shift
Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines ...
MHT CET 2024 3rd May Evening Shift
If $A(-4,5, P), B(3,1,4)$ and $C(-2,0, q)$ are the vertices of a triangle $A B C$ and $G(r, q, 1)$ is its centroid, then the value of $2 p+q-r$ is equ...
MHT CET 2024 3rd May Evening Shift
On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane $x+y+z=2$ ?...
MHT CET 2024 3rd May Morning Shift
Equation of the plane containing the straight line $\frac{x}{3}=\frac{y}{2}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines ...
MHT CET 2024 3rd May Morning Shift
The value of $m$, such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{2 z-m}{3}$ lies in the plane $2 x-5 y+2 z=7$, is
MHT CET 2024 3rd May Morning Shift
The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line
MHT CET 2024 3rd May Morning Shift
Let $\mathrm{P}(2,3,6)$ be a point in space and Q be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then...
MHT CET 2024 2nd May Evening Shift
Distance between the parallel lines $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ and $\frac{x+4}{3}=\frac{y-3}{-2}=\frac{z+2}{1}$ is
MHT CET 2024 2nd May Evening Shift
The equation of the plane, passing through the mid point of the line segment of join of the points $\mathrm{P}(1,2,5)$ and $\mathrm{Q}(3,4,3)$ and per...
MHT CET 2024 2nd May Evening Shift
The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is
MHT CET 2024 2nd May Evening Shift
The equation of the line, through $\mathrm{A}(1,2,3)$ and perpendicular to the vector $2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\hat...
MHT CET 2024 2nd May Evening Shift
Let $P$ be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through $P$ and containing the...
MHT CET 2024 2nd May Evening Shift
The incentre of the triangle whose vertices are $P(0,3,0), Q(0,0,4)$ and $R(0,3,4)$ is
MHT CET 2024 2nd May Morning Shift
The vector equation of a line whose Cartesian equations are $y=2,4 x-3 z+5=0$ is
MHT CET 2024 2nd May Morning Shift
The Cartesian equation of the plane, passing through the points $(3,1,1),(1,2,3)$ and $(-1,4,2)$, is
MHT CET 2024 2nd May Morning Shift
The equation of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac...
MHT CET 2024 2nd May Morning Shift
If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane $\ell x+m y-z=9$, then $\ell^2+m^2$ is
MHT CET 2023 14th May Evening Shift
The mirror image of $$\mathrm{P}(2,4,-1)$$ in the plane $$x-y+2 z-2=0$$ is $$(\mathrm{a}, \mathrm{b}, \mathrm{c})$$, then the value of $$a+b+c$$ is...
MHT CET 2023 14th May Evening Shift
If the lines $$\frac{x-\mathrm{k}}{2}=\frac{y+1}{3}=\frac{\mathrm{z}-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-\frac{9}{2}}{2}=\frac{\mathrm{z}}{1}$$ inters...
MHT CET 2023 14th May Evening Shift
A vector parallel to the line of intersection of the planes $$\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$$ and $$\bar{r} \cdot(\hat{i}+4 \hat{j}-2 \ha...
MHT CET 2023 14th May Evening Shift
The length of the perpendicular drawn from the point $$(1,2,3)$$ to the line $$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$$ is
MHT CET 2023 14th May Morning Shift
If $$\triangle \mathrm{ABC}$$ is right angled at $$\mathrm{A}$$, where $$A \equiv(4,2, x), \mathrm{B} \equiv(3,1,8)$$ and $$C \equiv(2,-1,2)$$, then t...
MHT CET 2023 14th May Morning Shift
The angle between the lines, whose direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ satisfy the equations $$l+\mathrm{m}+\mathrm{n}=0$$ and $$2 l^2+2 ...
MHT CET 2023 14th May Morning Shift
Equation of the plane passing through $$(1,-1,2)$$ and perpendicular to the planes $$x+2 y-2 z=4$$ and $$3 x+2 y+z=6$$ is
MHT CET 2023 14th May Morning Shift
A line with positive direction cosines passes through the point $$\mathrm{P}(2,-1,2)$$ and makes equal angles with the co-ordinate axes. The line meet...
MHT CET 2023 14th May Morning Shift
If the shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda}$$ and $$\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}$$ is $$...
MHT CET 2023 14th May Morning Shift
Consider the lines $$\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{\mathrm{z}+1}{2}$$
$$\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{\mathrm{z}-3...
MHT CET 2023 13th May Evening Shift
A tetrahedron has vertices at $$P(2,1,3), Q(-1,1,2), R(1,2,1)$$ and $$O(0,0,0)$$, then angle between the faces $$O P Q$$ and $$P Q R$$ is
MHT CET 2023 13th May Evening Shift
A plane is parallel to two lines whose direction ratios are $$2,0,-2$$ and $$-2,2,0$$ and it contains the point $$(2,2,2)$$. If it cuts coordinate axe...
MHT CET 2023 13th May Evening Shift
The incentre of the $$\triangle A B C$$, whose vertices are $$A(0,2,1), B(-2,0,0)$$ and $$C(-2,0,2)$$, is
MHT CET 2023 13th May Evening Shift
The acute angle between the line joining the points $$(2,1,-3),(-3,1,7)$$ and a line parallel to $$\frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5}$$ through t...
MHT CET 2023 13th May Evening Shift
The foot of the perpendicular from the point $$(1,2,3)$$ on the line $$\mathbf{r}=(6 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})+\lambda(3...
MHT CET 2023 13th May Evening Shift
The distance of the point $$(1,6,2)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-y+z=...
MHT CET 2023 13th May Morning Shift
A line drawn from the point $$\mathrm{A}(1,3,2)$$ parallel to the line $$\frac{x}{2}=\frac{y}{4}=\frac{z}{1}$$, intersects the plane $$3 x+y+2 z=5$$ i...
MHT CET 2023 13th May Morning Shift
A line $$\mathrm{L}_1$$ passes through the point, whose p. v. (position vector) $$3 \hat{i}$$, is parallel to the vector $$-\hat{\mathrm{i}}+\hat{\mat...
MHT CET 2023 13th May Morning Shift
The equation of the line passing through the point $$(-1,3,-2)$$ and perpendicular to each of the lines $$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$$ and $$...
MHT CET 2023 13th May Morning Shift
If $$A(1,4,2)$$ and $$C(5,-7,1)$$ are two vertices of triangle $$A B C$$ and $$G\left(\frac{4}{3}, 0, \frac{-2}{3}\right)$$ is centroid of the triangl...
MHT CET 2023 13th May Morning Shift
The distance of the point $$(-1,-5,-10)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-...
MHT CET 2023 12th May Evening Shift
The equation of the line, passing through $$(1,2,3)$$ and parallel to planes $$x-y+2 z=5$$ and $$3 x+y+z=6$$, is
MHT CET 2023 12th May Evening Shift
The shortest distance (in units) between the lines $$\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$$ and $$\bar{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda...
MHT CET 2023 12th May Evening Shift
The length (in units) of the projection of the line segment, joining the points $$(5,-1,4)$$ and $$(4,-1,3)$$, on the plane $$x+y+z=7$$ is
MHT CET 2023 12th May Evening Shift
If the volume of tetrahedron, whose vertices are $$\mathrm{A}(1,2,3), \mathrm{B}(-3,-1,1), \mathrm{C}(2,1,3)$$ and $$D(-1,2, x)$$ is $$\frac{11}{6}$$ ...
MHT CET 2023 12th May Evening Shift
Equation of plane containing the line $$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$$ and perpendicular to the plane containing the lines $$\frac{x}{3}=\frac{...
MHT CET 2023 12th May Morning Shift
The centroid of tetrahedron with vertices at $$\mathrm{A}(-1,2,3), \mathrm{B}(3,-2,1), \mathrm{C}(2,1,3)$$ and $$\mathrm{D}(-1,-2,4)$$ is
MHT CET 2023 12th May Morning Shift
A plane is parallel to two lines whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts the co-ordinat...
MHT CET 2023 12th May Morning Shift
The equation of the plane through $$(-1,1,2)$$ whose normal makes equal acute angles with co-ordinate axes is
MHT CET 2023 12th May Morning Shift
The distance of the point $$\mathrm{P}(-2,4,-5)$$ from the line $$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$$ is
MHT CET 2023 12th May Morning Shift
If the line $$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$$ and $$\frac{7-7 x}{3 \mathrm{p}}=\frac{y-5}{1}=\frac{6-\mathrm{z}}{5}$$ are at right an...
MHT CET 2023 11th May Evening Shift
If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $x-3=\frac{y-\mathrm{k}}{2}=\mathrm{z}$ intersect, then the value of $\mathrm{k}$ is
MHT CET 2023 11th May Evening Shift
If the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$$ meets the plane $$x+2 y+3 z=15$$ at the point $$P$$, then the distance of $$\mathrm{P}$$ fro...
MHT CET 2023 11th May Evening Shift
The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x...
MHT CET 2023 11th May Evening Shift
The angle between the line $$\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$$ and plane $$x-2 y-\lambda z=3$$ is $$\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\ri...
MHT CET 2023 11th May Morning Shift
If the direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ of two lines are connected by relations $$l-5 \mathrm{~m}+3 \mathrm{n}=0$$ and $$7 l^2+5 \math...
MHT CET 2023 11th May Morning Shift
The mirror image of the point $$(1,2,3)$$ in a plane is $$\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$$. Thus, the point _________ lies on thi...
MHT CET 2023 11th May Morning Shift
A plane is parallel to two lines, whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts co-ordinate a...
MHT CET 2023 11th May Morning Shift
The lines $$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5} \quad$$ and $$\frac{x+2}{4}=\frac{y-1}{3}=\frac{z+1}{2}$$
MHT CET 2023 11th May Morning Shift
The vector equation of the line $$2 x+4=3 y+1=6 z-3$$ is
MHT CET 2023 10th May Evening Shift
The plane through the intersection of planes $$x+y+z=1$$ and $$2 x+3 y-z+4=0$$ and parallel to $$\mathrm{Y}$$-axis also passes through the point...
MHT CET 2023 10th May Evening Shift
The perpendicular distance of the origin from the plane $$x-3 y+4 z-6=0$$ is
MHT CET 2023 10th May Evening Shift
Two lines $$\frac{x-3}{1}=\frac{y+1}{3}=\frac{z-6}{-1}$$ and $$\frac{x+5}{7}=\frac{y-2}{-6}=\frac{z-3}{4} \quad$$ intersect at the point R. Then refle...
MHT CET 2023 10th May Morning Shift
The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then the value of $$\alpha^2+\alpha \beta+\beta^...
MHT CET 2023 10th May Morning Shift
Let $$\mathrm{P}$$ be a plane passing through the points $$(2,1,0),(4,1,1)$$ and $$(5,0,1)$$ and $$R$$ be the point $$(2,1,6)$$. Then image of $$R$$ i...
MHT CET 2023 10th May Morning Shift
The co-ordinates of the point, where the line through $$A(3,4,1)$$ and $$B(5,1,6)$$ crosses the $$\mathrm{XZ}$$-plane, are
MHT CET 2023 10th May Morning Shift
$$\mathrm{ABC}$$ is a triangle in a plane with vertices $$\mathrm{A}(2,3,5), \mathrm{B}(-1,3,2)$$ and $$\mathrm{C}(\lambda, 5, \mu)$$. If median throu...
MHT CET 2023 9th May Evening Shift
If a line $$\mathrm{L}$$ is the line of intersection of the planes $$2 x+3 y+z=1$$ and $$x+3 y+2 z=2$$. If line $$\mathrm{L}$$ makes an angle $$\alpha...
MHT CET 2023 9th May Evening Shift
The shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$ and $$\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$$ is
MHT CET 2023 9th May Evening Shift
The co-ordinates of the point, where the line $$\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+5}{4}$$ meets the plane $$2 x+4 y-\mathrm{z}=3$$, are
MHT CET 2023 9th May Evening Shift
The equation of a plane, containing the line of intersection of the planes $$2 x-y-4=0$$ and $$y+2 z-4=0$$ and passing through the point $$(2,1,0)$$, ...
MHT CET 2023 9th May Morning Shift
The foot of the perpendicular drawn from the origin to the plane is $$(4,-2,5)$$, then the Cartesian equation of the plane is
MHT CET 2023 9th May Morning Shift
A vector $$\overrightarrow{\mathrm{n}}$$ is inclined to $$\mathrm{X}$$-axis at $$45^{\circ}$$, $$\mathrm{Y}$$-axis at $$60^{\circ}$$ and at an acute a...
MHT CET 2023 9th May Morning Shift
If the Cartesian equation of a line is $$6 x-2=3 y+1=2 z-2$$, then the vector equation of the line is
MHT CET 2022 11th August Evening Shift
The distance between parallel lines $$\frac{x-1}{2}=\frac{y-2}{-2}=\frac{z-3}{1}$$ and $$\frac{x}{2}=\frac{y}{-2}=\frac{z}{1}$$ is :...
MHT CET 2022 11th August Evening Shift
A line makes the same angle '$$\alpha$$' with each of the $$x$$ and $$y$$ axes. If the angle '$$\theta$$', which it makes with the $$z$$-axis, is such...
MHT CET 2022 11th August Evening Shift
A tetrahedron has verticles $$P(1,2,1), Q(2,1,3), R(-1,1,2)$$ and $$O(0,0,0)$$. Then the angle between the faces $$O P Q$$ and $$P Q R$$ is
MHT CET 2022 11th August Evening Shift
The Cartesian equation of a line passing through $$(1,2,3)$$ and parallel to $$x-y+2 z=5$$ and $$3 x+y+z=6$$ is
MHT CET 2022 11th August Evening Shift
The equation of the plane passing through the points $$(2,3,1),(4,-5,3)$$ and parallel to $$X$$-axis is
MHT CET 2021 24th September Evening Shift
The equation of the plane which passes through (2, $$-$$3, 1) and is normal to the line joining the points (3, 4, $$-$$1) and (2, $$-$$1, 5) is given ...
MHT CET 2021 24th September Evening Shift
If $$G(3,-5, r)$$ is the centroid of $$\triangle A B C$$, where $$A \equiv(7,-8,1), B \equiv(p, q, 5), C \equiv(q+1,5 p, 0)$$ are vertices of the tria...
MHT CET 2021 24th September Evening Shift
If the lines $$\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$$ and $$\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$$ are perpendicular to each...
MHT CET 2021 24th September Evening Shift
The co-ordinates of the points on the line $$\frac{x+2}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$$ at a distance of 12 units from the point A($$-$$2, 1, $$-$$1...
MHT CET 2021 24th September Evening Shift
If the vector equation of the plane $$\bar{r}=(2 \hat{i}+\hat{k})+\lambda \hat{i}+\mu(\hat{i}+2 \hat{j}-3 \hat{k})$$ in scalar product form is given b...
MHT CET 2021 24th September Morning Shift
If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-2}{1}=\frac{y+m}{2}=\frac{z-2}{1}$$ intersect each other, then value of m is...
MHT CET 2021 24th September Morning Shift
The length of perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\overline{\mathrm{r}}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+...
MHT CET 2021 24th September Morning Shift
Equation of the plane passing through the point $$(1,2,3)$$ and parallel to the plane $$2 x+3 y-4 z=0
$$
MHT CET 2021 24th September Morning Shift
If $$\mathrm{A}$$ and $$\mathrm{B}$$ are the foot of the perpendicular drawn from the point $$\mathrm{Q}(\mathrm{a}, \mathrm{b}, \mathrm{c})$$ to the ...
MHT CET 2021 24th September Morning Shift
If $$\mathrm{A}=(-2,2,3), \mathrm{B}=(3,2,2), \mathrm{C}=(4,-3,5)$$ and $$\mathrm{D}=(7,-5,-1)$$ Then the projection of $$\overline{\mathrm{AB}}$$ on ...
MHT CET 2021 23rd September Evening Shift
The Cartesian equation of a plane which passes through the points $$\mathrm{A}(2,2,2)$$ and making equal nonzero intercepts on the co-ordinate axes is...
MHT CET 2021 23rd September Evening Shift
The co-ordinates of the foot of the perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\vec{r}=(11 \hat{i}-2 \hat{j}-8 \...
MHT CET 2021 23th September Morning Shift
If A(3, 2, $$-$$1), B($$-$$2, 2, $$-$$3) and D($$-$$2, 5, $$-$$4) are the vertices of a parallelogram, then the area of the parallelogram is
MHT CET 2021 23th September Morning Shift
The distance between the parallel lines $$\frac{x-2}{3}=\frac{y-4}{5}=\frac{z-1}{2}$$ and $$\frac{x-1}{3}=\frac{y+2}{5}=\frac{z+3}{2}$$ is
MHT CET 2021 23th September Morning Shift
The coordinates of the foot of the perpendicular drawn from the origin to the plane $$2 x+y-2 z=18$$ are
MHT CET 2021 23th September Morning Shift
The vector equation of the line passing through $$\mathrm{P}(1,2,3)$$ and $$\mathrm{Q}(2,3,4)$$ is
MHT CET 2021 23th September Morning Shift
Equation of planes parallel to the plane $$x-2y+2z+4=0$$ which are at a distance of one unit from the point (1, 2, 3) are
MHT CET 2021 22th September Evening Shift
The area of triangle with vertices $$(1,2,0),(1,0, a)$$ and $$(0,3,1)$$ is $$\sqrt{6}$$ sq. units, then the values of '$$a$$' are
MHT CET 2021 22th September Evening Shift
If $$\mathrm{G}(4,3,3)$$ is the centroid of the triangle $$\mathrm{ABC}$$ whose vertices are $$\mathrm{A}(\mathrm{a}, 3,1), \mathrm{B}(4,5, \mathrm{~b...
MHT CET 2021 22th September Evening Shift
The d.r.s. of the normal to the plane passing through the origin and the line of intersection of the planes $$x+2 y+3 z=4$$ and $$4 x+3 y+2 z=1$$ are...
MHT CET 2021 22th September Evening Shift
The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then value of $$\alpha \beta$$ is
MHT CET 2021 22th September Evening Shift
If the points $$P(4,5, x), Q(3, y, 4)$$ and $$R(5,8,0)$$ are collinear, then the value of $$x+y$$ is
MHT CET 2021 22th September Evening Shift
A line drawn from a point $$A(-2,-2,3)$$ and parallel to the line $$\frac{x}{-2}=\frac{y}{2}=\frac{z}{-1}$$ meets the $$\mathrm{YOZ}$$ plane in point ...
MHT CET 2021 22th September Morning Shift
The Cartesian equation of a line is $$3 x+1=6 y-2=1-z$$, then its vector equation is
MHT CET 2021 22th September Morning Shift
The plane $$\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$$ cuts the $$X$$-axis at A, Y-axis at B and Z-axis at C, then the area of $$\triangle \mathrm{ABC}=$...
MHT CET 2021 22th September Morning Shift
If a plane meets the axes $$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$$ in $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$ respectively such that centroid of $$\trian...
MHT CET 2021 22th September Morning Shift
The shortest distance between lines $$\bar{r}=(2 \hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$$ and $$\bar{r}=(\hat{r}-\hat{j}+2 \hat{k})+\mu...
MHT CET 2021 21th September Evening Shift
The direction cosines $$\ell, \mathrm{m}, \mathrm{n}$$ of the line $$\frac{\mathrm{x}+2}{2}=\frac{2 \mathrm{y}-5}{3} ; \mathrm{z}=-1$$ are
MHT CET 2021 21th September Evening Shift
Equation of the plane passing through the point (2, 0, 5) and parallel to the vectors $$\widehat i - \widehat j + \widehat k$$ and $$3\widehat i + 2\w...
MHT CET 2021 21th September Evening Shift
The co-ordinates of the point $$\mathrm{P} \equiv(1,2,3)$$ and $$\mathrm{O} \equiv(0,0,0)$$, then the direction cosines of $$\overline{\mathrm{OP}}$$ ...
MHT CET 2021 21th September Evening Shift
The equation of the plane containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ and the point $$(0,7,-7)$$ is
MHT CET 2021 21th September Evening Shift
The equation of a line passing through $$(3,-1,2)$$ and perpendicular to the lines $$\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\ha...
MHT CET 2021 21th September Evening Shift
The area of the parallelogram with vertices A(1, 2, 3), B(1, 3, a), C(3, 8, 6) and D(3, 7, 3) is $$\sqrt{265}$$ sq. units, then a =
MHT CET 2021 21th September Morning Shift
If the lines $\frac{1-x}{3}=\frac{7 y-14}{2 \lambda}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles, the...
MHT CET 2021 21th September Morning Shift
The Cartesian equation of the plane passing through the point A(7, 8, 6) and parallel to the XY plane is
MHT CET 2021 21th September Morning Shift
The equation of the plane passing through $$(-2,2,2)$$ and $$(2,-2,-2)$$ and perpendicular to the plane $$9 x-13 y-3 z=0$$ is
MHT CET 2021 20th September Evening Shift
The Cartesian equation of the line passing through the points A(2, 2, 1) and B(1, 3, 0) is
MHT CET 2021 20th September Evening Shift
The Cartesian equation of the plane $$\overline{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm...
MHT CET 2021 20th September Evening Shift
The equation of the plane that contains the line of intersection of the planes. $$x+2 y+3 z-4=0$$ and $$2 x+y-z+5=0$$ and is perpendicular to the plan...
MHT CET 2021 20th September Evening Shift
The vector equation of the line whose Cartesian equations are y = 2 and 4x $$-$$ 3z + 5 = 0 is
MHT CET 2021 20th September Morning Shift
The Cartesian equation of the plane passing through the point $$(0,7,-7)$$ and containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ is...
MHT CET 2021 20th September Morning Shift
If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$$ intersect, then the values of $$k$$ is...
MHT CET 2021 20th September Morning Shift
The parametric equations of a line passing through the points $$\mathrm{A}(3,4,-7)$$ and $$\mathrm{B}(1,-1,6)$$ are
MHT CET 2021 20th September Morning Shift
The angle between a line with direction ratios 2, 2, 1 and a line joining (3, 1, 4) and (7, 2, 12) is
MHT CET 2021 20th September Morning Shift
If the line $$\frac{x+1}{2}=\frac{y-m}{3}=\frac{z-4}{6}$$ lies in the plane $$3 x-14 y+6 z+49=0$$, then the value of $$m$$ is
MHT CET 2020 19th October Evening Shift
The point $P$ lies on the line $A, B$ where $A=(2,4,5)$ and $B \equiv(1,2,3)$. If $z$ co-ordinate of point $P$ is 3 , the its $y$ co-ordinate is...
MHT CET 2020 19th October Evening Shift
A line makes angles $\alpha, \beta, \gamma$ with the co-ordinate axes and $\alpha+\beta=90^{\circ}$, then $\gamma=$
MHT CET 2020 19th October Evening Shift
The equations of planes parallel to the plane $x+2 y+2 z+8=0$, which are at a distance of 2 units from the point $(1,1,2)$ are
MHT CET 2020 19th October Evening Shift
The equation of a plane containing the point $(1,-1,2)$ and perpendicular to the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$ is
MHT CET 2020 19th October Evening Shift
The equation of the line passing through $(1,2,3)$ and perpendicular to the lines $x-1=\frac{y+2}{2}=\frac{z+4}{4}$ and $\frac{x-1}{2}=\frac{y-2}{2}=z...
MHT CET 2020 16th October Evening Shift
If the plane $$2 x+3 y+5 z=1$$ intersects the co-ordinate axes at the points $$A, B, C$$, then the centroid of $$\triangle A B C$$ is
MHT CET 2020 16th October Evening Shift
The direction co-sines of the line which bisects the angle between positive direction of $$Y$$ and $$Z$$ axes are
MHT CET 2020 16th October Evening Shift
The angle between the lines $$\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}$$ and $$\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}$$ is
MHT CET 2020 16th October Evening Shift
If the line $$r=(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$$ is parallel...
MHT CET 2020 16th October Evening Shift
The points $$A(-a,-b), B(0,0), C(a, b)$$ and $$D\left(a^2, a b\right)$$ are
MHT CET 2020 16th October Evening Shift
The cosine of the angle included between the lines $$\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-2 \h...
MHT CET 2020 16th October Morning Shift
If the foot of perpendicular drawn from the origin to the plane is $$(3,2,1)$$, then the equation of plane is
MHT CET 2020 16th October Morning Shift
The angle between the line $$r =(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})$$ and the plane $$\m...
MHT CET 2020 16th October Morning Shift
The direction cosines of a line which is perpendicular to lines whose direction ratios are $$3,-2,4$$ and $$1,3,-2$$ are
MHT CET 2020 16th October Morning Shift
If the lines given by $$\frac{x-1}{2 \lambda}=\frac{y-1}{-5}=\frac{z-1}{2}$$ and $$\frac{x+2}{\lambda}=\frac{y+3}{\lambda}=\frac{z+5}{1}$$ are paralle...
MHT CET 2019 3rd May Morning Shift
The vector equation of the plane $\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\mu(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3...
MHT CET 2019 3rd May Morning Shift
The direction ratios of the normal to the plane passing through origin and the line of intersection of the planes $x+2 y+3 z=4$ and $4 x+3 y+2 z=1$ ar...
MHT CET 2019 3rd May Morning Shift
If line $\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$ are perpendicular to each other th...
MHT CET 2019 3rd May Morning Shift
Which of the following can not be the direction cosines of a line?
MHT CET 2019 2nd May Evening Shift
If lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\lambda}{2}=\frac{z}{1}$ intersect each other, then $\lambda=\ldots \l...
MHT CET 2019 2nd May Evening Shift
Equations of planes parallel to the plane $x-2 y+2 z+4=0$ which are at a distance of one unit from the point $(1,2,3)$ are ............
MHT CET 2019 2nd May Evening Shift
If $P(6,10,10), Q(1,0,-5), R(6,-10, \lambda)$ are vertices of a triangle right angled at $Q$, then value of $\lambda$ is ............
MHT CET 2019 2nd May Evening Shift
If the foot of the perpendicular drawn from the point $(0,0,0)$ to the plane is $(4,-2,-5)$ then the equation of the plane is .............
MHT CET 2019 2nd May Morning Shift
If $G(3,-5, r)$ is centroid of triangle $A B C$ where $A(7,-8,1), B(p, q, 5)$ and $C(q+1,5 p, 0)$ are vertices of a triangle then values of $p, q, r$ ...
MHT CET 2019 2nd May Morning Shift
The angle between lines $\frac{x-2}{2}=\frac{y-3}{-2}=\frac{z-5}{1}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-5}{2}$ is ............
MHT CET 2019 2nd May Morning Shift
If the line passes through the points $P(6,-1,2), Q(8,-7,2 \lambda)$ and $R(5,2,4)$ then value of $\lambda$ is ...........
MHT CET 2019 2nd May Morning Shift
The co-ordinates of the foot of perpendicular drawn from origin to the plane $2 x-y+5 z-3=0$ are $\ldots \ldots$
MHT CET 2019 2nd May Morning Shift
The equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line joining the points $(-3,1,2)$ and $(2,3,4)$ is