Three Dimensional Geometry · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

The co-ordinates of the foot of the perpendicular from the point $(0,2,3)$ on the line $\frac{x+3}{5}=\frac{y+1}{2}=\frac{z+4}{3}$ is

MHT CET 2024 16th May Evening Shift
2

A line having direction ratios $1,-4,2$ intersects the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ at the points $A$ and $B$ resp., then co-ordinates of points A and B are

MHT CET 2024 16th May Evening Shift
3

A plane makes positive intercepts of unit length on each of $X$ and $Y$ axis. If it passes through the point $(-1,1,2)$ and makes angle $\theta$ with the X -axis, then $\theta$ is

MHT CET 2024 16th May Evening Shift
4

The equation of plane through the point $(2,-1,-3)$ and parallel to lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

MHT CET 2024 16th May Evening Shift
5

The equation of the plane, passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $Y$-axis is

MHT CET 2024 16th May Morning Shift
6

A line with positive direction cosines passes through the point $\mathrm{P}(2,-1,2)$ and makes equal angles with co-ordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. Then the length of the line segment PQ equals

MHT CET 2024 16th May Morning Shift
7

If the distance between the plane Ax-2y+z $=\mathrm{d}$ and the plane containing the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$ units, then $|d|$ is

MHT CET 2024 16th May Morning Shift
8

The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is

MHT CET 2024 16th May Morning Shift
9

A line makes $45^{\circ}$ angle with positive X -axis and makes equal angles with positive Y -axis ad Z-axis respectively, then the sum of the three angles which the line makes with positive X -axis, Y -axis and Z -axis is

MHT CET 2024 15th May Evening Shift
10

If the lines $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k has the value

MHT CET 2024 15th May Evening Shift
11

The vector equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$, which is perpendicular to the plane $x-y+z=0$, is

MHT CET 2024 15th May Evening Shift
12

The equation of a line passing through the point $(2,-1,1)$ and parallel to the line joining the points $\hat{i}+2 \hat{j}+2 \hat{k}$ and $-\hat{i}+4 \hat{j}+\hat{k}$ is

MHT CET 2024 15th May Evening Shift
13

The foot of the perpendicular drawn from origin to a plane is $\mathrm{M}(2,1,-2)$, then vector equation of the plane is

MHT CET 2024 15th May Evening Shift
14

Let $\mathrm{L}_1: \frac{x+2}{5}=\frac{y-3}{2}=\frac{\mathrm{z}-6}{1}$ and $\mathrm{L}_2: \frac{x-3}{4}=\frac{y+2}{3}=\frac{z-3}{5}$ be the given lines. Then the unit vector perpendicular to both $\mathrm{L}_1$ and $\mathrm{L}_2$ is

MHT CET 2024 15th May Morning Shift
15

The perpendicular distance from the origin to the plane containing the two lines $\frac{x+2}{3}=\frac{y-2}{5}=\frac{z+5}{7}$ and $\frac{x-1}{1}=\frac{y-4}{4}=\frac{z+4}{7}$, is

MHT CET 2024 15th May Morning Shift
16

Let $P(2,1,5)$ be a point in space and $Q$ be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which the vector $\overline{\mathrm{PQ}}$ is parallel to the plane $3 x-y+4 z=1$ is

MHT CET 2024 15th May Morning Shift
17

The centroid of tetrahedron with vertices $\mathrm{P}(5,-7,0), \mathrm{Q}(\mathrm{a}, 5,3), \mathrm{R}(4,-6, b)$ and $\mathrm{S}(6, \mathrm{c}, 2)$ is $(4,-3,2)$, then the value of $2 a+3 b+c$ is equal to

MHT CET 2024 15th May Morning Shift
18

A variable plane passes through the fixed point $(3,2,1)$ and meets $X, Y$ and $Z$ axes at points $A$, B and C respectively. A plane is drawn parallel to YZ - plane through A , a second plane is drawn parallel to ZX -plan through B , a third plane is drawn parallel to XY - plane through C . Then locus of the point of intersection of these three planes, is

MHT CET 2024 11th May Evening Shift
19

The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=\mathrm{z}$ is __________ units.

MHT CET 2024 11th May Evening Shift
20

If for some $\alpha \in \mathbb{R}$, the lines $\mathrm{L}_1: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\mathrm{L}_2: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line $L_2$ passes through the point

MHT CET 2024 11th May Evening Shift
21

Let $P(3,2,6)$ be a point in space and $Q$ be a point on the line $\bar{r}=\hat{i}-\hat{j}+2 \hat{k}+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which the vector $\overline{\mathrm{PQ}}$ is parallel to the plane $x-4 y+3 z=1$ is

MHT CET 2024 11th May Evening Shift
22

The perpendicular distance of the origin from the plane $2 x+y-2 z-18=0$ is

MHT CET 2024 11th May Morning Shift
23

The plane $2 x+3 y+4 z=1$ meets $X$-axis in $A$, Y -axis in B and Z -axis in C . Then the centroid of $\triangle A B C$ is

MHT CET 2024 11th May Morning Shift
24

If the lines $\frac{x+1}{-10}=\frac{y+k}{-1}=\frac{z-4}{1} \quad$ and $\frac{x+10}{-1}=\frac{y+1}{-3}=\frac{z-1}{4}$ intersect each other, then the value of $k$ is

MHT CET 2024 11th May Morning Shift
25

The equation of the line passing through the point $(3,1,2)$ and perpendicular to the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$ is

MHT CET 2024 11th May Morning Shift
26

The area of the triangle with vertices $(1,2,0)$, $(1,0,2)$ and $(0,3,1)$ is

MHT CET 2024 11th May Morning Shift
27

If the volume of tetrahedron whose vertices are $A \equiv(1,-6,10), B \equiv(-1,-3,7), C \equiv(5,-1, k)$ and $D \equiv(7,-4,7)$ is 11 cu . units, then the value of $k$ is

MHT CET 2024 11th May Morning Shift
28

The vector equation of the plane passing through the point $\mathrm{A}(1,2,-1)$ and parallel to the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+3 \hat{k}$ is

MHT CET 2024 10th May Evening Shift
29

The shortest distance between lines $\bar{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\bar{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ is

MHT CET 2024 10th May Evening Shift
30

If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then the value of k is

MHT CET 2024 10th May Evening Shift
31

The projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{CD}}$, where $A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$ and $\mathrm{D} \equiv(7,0,10)$ is

MHT CET 2024 10th May Evening Shift
32

The equation of the plane through the point $(2,-1,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

MHT CET 2024 10th May Evening Shift
33

Equation of the plane, through the points $(-1,2,-2)$ and $(-1,3,2)$ and perpendicular to $y \mathrm{z}$ - plane, is

MHT CET 2024 10th May Morning Shift
34

If the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{-1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k is equal to

MHT CET 2024 10th May Morning Shift
35

If the line, $\frac{x-3}{2}=\frac{y+2}{1}=\frac{z+4}{3}$ lies in the plane, $\ell x+m y-z=9$, then $\ell^2+m^2$ is equal to

MHT CET 2024 10th May Morning Shift
36

If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$, then $(\alpha, \beta)=$

MHT CET 2024 10th May Morning Shift
37

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,2,1)$. The distance of the plane from the point $(2,3,4)$ is

MHT CET 2024 9th May Evening Shift
38

The value of m such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z+m}{2}$ lies in the plane $2 x-4 y+z=7$ is

MHT CET 2024 9th May Evening Shift
39

A line with positive direction cosines passes through the point $\mathrm{P}(2,1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+\mathrm{z}=9$ at point Q . The length of the line segment PQ equals $\qquad$ units.

MHT CET 2024 9th May Evening Shift
40

Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle $\alpha$ with the positive X -axis, then $\cos \alpha$ equals

MHT CET 2024 9th May Evening Shift
41

The equation of the plane, passing through the point $(1,1,1)$ and perpendicular to the planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$, is

MHT CET 2024 9th May Morning Shift
42

The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$ having normal perpendicular to both the lines $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$ and $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1}$ is

MHT CET 2024 9th May Morning Shift
43

The value of m , such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-m}{2}$ lies in the plane $2 x-4 y+z=7$, is

MHT CET 2024 9th May Morning Shift
44

The length of the perpendicular from the point $\mathrm{A}(1,-2,-3)$ on the line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z+1}{-2}$ is

MHT CET 2024 9th May Morning Shift
45

If the points $(1,-1, \lambda)$ and $(-3,0,1)$ are equidistant from the plane $3 x-4 y-12 z+13=0$, then the sum of all possible values of $\lambda$ is

MHT CET 2024 4th May Evening Shift
46

Let P be a plane passing through the points $(2,1,0),(4,1,1)$ and $(5,0,1)$ and $R$ be the point $(2,1,6)$. Then image of $R$ in the plane $P$ is

MHT CET 2024 4th May Evening Shift
47

The equation of the plane, passing through the point $(-1,2,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y-2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$, is

MHT CET 2024 4th May Evening Shift
48

The co-ordinates of the point where the line through $\mathrm{A}(3,4,1)$ and $\mathrm{B}(5,1,6)$ crosses the $x y$-plane are

MHT CET 2024 4th May Evening Shift
49

The Cartesian equation of a line is $2 x-2=3 y+1=6 z-2$, then the vector equation of the line is

MHT CET 2024 4th May Evening Shift
50

The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} \quad$ and $\frac{x-1}{\mathrm{k}}=\frac{y-4}{2}=\frac{\mathrm{z}-5}{1}$ are coplanar if

MHT CET 2024 4th May Morning Shift
51

Let $\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ be two given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

MHT CET 2024 4th May Morning Shift
52

Let $a, b \in R$. If the mirror image of the point $\mathrm{p}(\mathrm{a}, 6,9)$ w.r.t. line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, b,-a-9)$, then $|a+b|$ is equal to

MHT CET 2024 4th May Morning Shift
53

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,2)$ is

MHT CET 2024 4th May Morning Shift
54

Let $\mathrm{L}_1$ $\frac{x+1}{3}=\frac{y+2}{2}=\frac{z+1}{1}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y+2}{1}=\frac{z-3}{3}$ be the given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

MHT CET 2024 3rd May Evening Shift
55

The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is

MHT CET 2024 3rd May Evening Shift
56

Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

MHT CET 2024 3rd May Evening Shift
57

If $A(-4,5, P), B(3,1,4)$ and $C(-2,0, q)$ are the vertices of a triangle $A B C$ and $G(r, q, 1)$ is its centroid, then the value of $2 p+q-r$ is equal to

MHT CET 2024 3rd May Evening Shift
58

On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane $x+y+z=2$ ?

MHT CET 2024 3rd May Evening Shift
59

Equation of the plane containing the straight line $\frac{x}{3}=\frac{y}{2}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{4}=\frac{y}{3}=\frac{z}{2}$ and $\frac{x}{2}=\frac{y}{-4}=\frac{z}{3}$ is

MHT CET 2024 3rd May Morning Shift
60

The value of $m$, such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{2 z-m}{3}$ lies in the plane $2 x-5 y+2 z=7$, is

MHT CET 2024 3rd May Morning Shift
61

The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line

MHT CET 2024 3rd May Morning Shift
62

Let $\mathrm{P}(2,3,6)$ be a point in space and Q be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which vector $\overline{\mathrm{PQ}}$ is parallel to the plane $x-4 y+4 z=1$ is

MHT CET 2024 3rd May Morning Shift
63

Distance between the parallel lines $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ and $\frac{x+4}{3}=\frac{y-3}{-2}=\frac{z+2}{1}$ is

MHT CET 2024 2nd May Evening Shift
64

The equation of the plane, passing through the mid point of the line segment of join of the points $\mathrm{P}(1,2,5)$ and $\mathrm{Q}(3,4,3)$ and perpendicular to it, is

MHT CET 2024 2nd May Evening Shift
65

The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is

MHT CET 2024 2nd May Evening Shift
66

The equation of the line, through $\mathrm{A}(1,2,3)$ and perpendicular to the vector $2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$, is

MHT CET 2024 2nd May Evening Shift
67

Let $P$ be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through $P$ and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is

MHT CET 2024 2nd May Evening Shift
68

The incentre of the triangle whose vertices are $P(0,3,0), Q(0,0,4)$ and $R(0,3,4)$ is

MHT CET 2024 2nd May Evening Shift
69

The vector equation of a line whose Cartesian equations are $y=2,4 x-3 z+5=0$ is

MHT CET 2024 2nd May Morning Shift
70

The Cartesian equation of the plane, passing through the points $(3,1,1),(1,2,3)$ and $(-1,4,2)$, is

MHT CET 2024 2nd May Morning Shift
71

The equation of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$, is

MHT CET 2024 2nd May Morning Shift
72

If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane $\ell x+m y-z=9$, then $\ell^2+m^2$ is

MHT CET 2024 2nd May Morning Shift
73

The mirror image of $$\mathrm{P}(2,4,-1)$$ in the plane $$x-y+2 z-2=0$$ is $$(\mathrm{a}, \mathrm{b}, \mathrm{c})$$, then the value of $$a+b+c$$ is

MHT CET 2023 14th May Evening Shift
74

If the lines $$\frac{x-\mathrm{k}}{2}=\frac{y+1}{3}=\frac{\mathrm{z}-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-\frac{9}{2}}{2}=\frac{\mathrm{z}}{1}$$ intersect, then the value of $$\mathrm{k}$$ is

MHT CET 2023 14th May Evening Shift
75

A vector parallel to the line of intersection of the planes $$\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$$ and $$\bar{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$$ is

MHT CET 2023 14th May Evening Shift
76

The length of the perpendicular drawn from the point $$(1,2,3)$$ to the line $$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$$ is

MHT CET 2023 14th May Evening Shift
77

If $$\triangle \mathrm{ABC}$$ is right angled at $$\mathrm{A}$$, where $$A \equiv(4,2, x), \mathrm{B} \equiv(3,1,8)$$ and $$C \equiv(2,-1,2)$$, then the value of $$x$$ is

MHT CET 2023 14th May Morning Shift
78

The angle between the lines, whose direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ satisfy the equations $$l+\mathrm{m}+\mathrm{n}=0$$ and $$2 l^2+2 \mathrm{~m}^2-\mathrm{n}^2=0$$, is

MHT CET 2023 14th May Morning Shift
79

Equation of the plane passing through $$(1,-1,2)$$ and perpendicular to the planes $$x+2 y-2 z=4$$ and $$3 x+2 y+z=6$$ is

MHT CET 2023 14th May Morning Shift
80

A line with positive direction cosines passes through the point $$\mathrm{P}(2,-1,2)$$ and makes equal angles with the co-ordinate axes. The line meets the plane $$2 x+y+z=9$$ at point $$\mathrm{Q}$$. The length of the line segment $$P Q$$ equals

MHT CET 2023 14th May Morning Shift
81

If the shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda}$$ and $$\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}$$ is $$\frac{1}{\sqrt{3}}$$, then sum of possible values of $$\lambda$$ is

MHT CET 2023 14th May Morning Shift
82

Consider the lines $$\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{\mathrm{z}+1}{2}$$

$$\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{\mathrm{z}-3}{3}$$, then the unit vector perpendicular to both $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ is

MHT CET 2023 14th May Morning Shift
83

A tetrahedron has vertices at $$P(2,1,3), Q(-1,1,2), R(1,2,1)$$ and $$O(0,0,0)$$, then angle between the faces $$O P Q$$ and $$P Q R$$ is

MHT CET 2023 13th May Evening Shift
84

A plane is parallel to two lines whose direction ratios are $$2,0,-2$$ and $$-2,2,0$$ and it contains the point $$(2,2,2)$$. If it cuts coordinate axes at $$A, B, C$$, then the volume of the tetrahedron $$O A B C$$ (in cubic units) is

MHT CET 2023 13th May Evening Shift
85

The incentre of the $$\triangle A B C$$, whose vertices are $$A(0,2,1), B(-2,0,0)$$ and $$C(-2,0,2)$$, is

MHT CET 2023 13th May Evening Shift
86

The acute angle between the line joining the points $$(2,1,-3),(-3,1,7)$$ and a line parallel to $$\frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5}$$ through the point $$(-1,0,4)$$ is

MHT CET 2023 13th May Evening Shift
87

The foot of the perpendicular from the point $$(1,2,3)$$ on the line $$\mathbf{r}=(6 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ has the coordinates

MHT CET 2023 13th May Evening Shift
88

The distance of the point $$(1,6,2)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-y+z=16$$ is

MHT CET 2023 13th May Evening Shift
89

A line drawn from the point $$\mathrm{A}(1,3,2)$$ parallel to the line $$\frac{x}{2}=\frac{y}{4}=\frac{z}{1}$$, intersects the plane $$3 x+y+2 z=5$$ in point $$\mathrm{B}$$, then co-ordinates of point $$\mathrm{B}$$ are

MHT CET 2023 13th May Morning Shift
90

A line $$\mathrm{L}_1$$ passes through the point, whose p. v. (position vector) $$3 \hat{i}$$, is parallel to the vector $$-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$$. Another line $$\mathrm{L}_2$$ passes through the point having p.v. $$\hat{i}+\hat{j}$$ is parallel to vector $$\hat{i}+\hat{k}$$, then the point of intersection of lines $$L_1$$ and $$L_2$$ has p.v.

MHT CET 2023 13th May Morning Shift
91

The equation of the line passing through the point $$(-1,3,-2)$$ and perpendicular to each of the lines $$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$$ and $$\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$$ is

MHT CET 2023 13th May Morning Shift
92

If $$A(1,4,2)$$ and $$C(5,-7,1)$$ are two vertices of triangle $$A B C$$ and $$G\left(\frac{4}{3}, 0, \frac{-2}{3}\right)$$ is centroid of the triangle $$A B C$$, then the mid point of side $$B C$$ is

MHT CET 2023 13th May Morning Shift
93

The distance of the point $$(-1,-5,-10)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-y+z=5$$ is

MHT CET 2023 13th May Morning Shift
94

The equation of the line, passing through $$(1,2,3)$$ and parallel to planes $$x-y+2 z=5$$ and $$3 x+y+z=6$$, is

MHT CET 2023 12th May Evening Shift
95

The shortest distance (in units) between the lines $$\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$$ and $$\bar{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+2 \hat{j})$$ is

MHT CET 2023 12th May Evening Shift
96

The length (in units) of the projection of the line segment, joining the points $$(5,-1,4)$$ and $$(4,-1,3)$$, on the plane $$x+y+z=7$$ is

MHT CET 2023 12th May Evening Shift
97

If the volume of tetrahedron, whose vertices are $$\mathrm{A}(1,2,3), \mathrm{B}(-3,-1,1), \mathrm{C}(2,1,3)$$ and $$D(-1,2, x)$$ is $$\frac{11}{6}$$ cubic units, then the value of $$x$$ is

MHT CET 2023 12th May Evening Shift
98

Equation of plane containing the line $$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$$ and perpendicular to the plane containing the lines $$\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$$ and $$\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$$ is

MHT CET 2023 12th May Evening Shift
99

The centroid of tetrahedron with vertices at $$\mathrm{A}(-1,2,3), \mathrm{B}(3,-2,1), \mathrm{C}(2,1,3)$$ and $$\mathrm{D}(-1,-2,4)$$ is

MHT CET 2023 12th May Morning Shift
100

A plane is parallel to two lines whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts the co-ordinate axes at $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$, then the volume of the tetrahedron $$\mathrm{OABC}$$ (in cubic units) is

MHT CET 2023 12th May Morning Shift
101

The equation of the plane through $$(-1,1,2)$$ whose normal makes equal acute angles with co-ordinate axes is

MHT CET 2023 12th May Morning Shift
102

The distance of the point $$\mathrm{P}(-2,4,-5)$$ from the line $$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$$ is

MHT CET 2023 12th May Morning Shift
103

If the line $$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$$ and $$\frac{7-7 x}{3 \mathrm{p}}=\frac{y-5}{1}=\frac{6-\mathrm{z}}{5}$$ are at right angles, then $$\mathrm{p}=$$

MHT CET 2023 12th May Morning Shift
104
If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $x-3=\frac{y-\mathrm{k}}{2}=\mathrm{z}$ intersect, then the value of $\mathrm{k}$ is
MHT CET 2023 11th May Evening Shift
105

If the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$$ meets the plane $$x+2 y+3 z=15$$ at the point $$P$$, then the distance of $$\mathrm{P}$$ from the origin is

MHT CET 2023 11th May Evening Shift
106

The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$$ is

MHT CET 2023 11th May Evening Shift
107

The angle between the line $$\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$$ and plane $$x-2 y-\lambda z=3$$ is $$\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$$, then value of $$\lambda$$ is

MHT CET 2023 11th May Evening Shift
108

If the direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ of two lines are connected by relations $$l-5 \mathrm{~m}+3 \mathrm{n}=0$$ and $$7 l^2+5 \mathrm{~m}^2-3 \mathrm{n}^2=0$$, then value of $$l+\mathrm{m}+\mathrm{n}$$ is

MHT CET 2023 11th May Morning Shift
109

The mirror image of the point $$(1,2,3)$$ in a plane is $$\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$$. Thus, the point _________ lies on this plane.

MHT CET 2023 11th May Morning Shift
110

A plane is parallel to two lines, whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts co-ordinate axes $$(\mathrm{X}, \mathrm{Y}, \mathrm{Z}$$ - axes resp.) at $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$, then the volume of the tetrahedron $$\mathrm{OABC}$$ is _________ cu. units.

MHT CET 2023 11th May Morning Shift
111

The lines $$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5} \quad$$ and $$\frac{x+2}{4}=\frac{y-1}{3}=\frac{z+1}{2}$$

MHT CET 2023 11th May Morning Shift
112

The vector equation of the line $$2 x+4=3 y+1=6 z-3$$ is

MHT CET 2023 11th May Morning Shift
113

The plane through the intersection of planes $$x+y+z=1$$ and $$2 x+3 y-z+4=0$$ and parallel to $$\mathrm{Y}$$-axis also passes through the point

MHT CET 2023 10th May Evening Shift
114

The perpendicular distance of the origin from the plane $$x-3 y+4 z-6=0$$ is

MHT CET 2023 10th May Evening Shift
115

Two lines $$\frac{x-3}{1}=\frac{y+1}{3}=\frac{z-6}{-1}$$ and $$\frac{x+5}{7}=\frac{y-2}{-6}=\frac{z-3}{4} \quad$$ intersect at the point R. Then reflection of $$\mathrm{R}$$ in the $$x y$$-plane has co-ordinates

MHT CET 2023 10th May Evening Shift
116

The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then the value of $$\alpha^2+\alpha \beta+\beta^2$$ is

MHT CET 2023 10th May Morning Shift
117

Let $$\mathrm{P}$$ be a plane passing through the points $$(2,1,0),(4,1,1)$$ and $$(5,0,1)$$ and $$R$$ be the point $$(2,1,6)$$. Then image of $$R$$ in the plane $$P$$ is

MHT CET 2023 10th May Morning Shift
118

The co-ordinates of the point, where the line through $$A(3,4,1)$$ and $$B(5,1,6)$$ crosses the $$\mathrm{XZ}$$-plane, are

MHT CET 2023 10th May Morning Shift
119

$$\mathrm{ABC}$$ is a triangle in a plane with vertices $$\mathrm{A}(2,3,5), \mathrm{B}(-1,3,2)$$ and $$\mathrm{C}(\lambda, 5, \mu)$$. If median through $$\mathrm{A}$$ is equally inclined to the co-ordinate axes, then value of $$\lambda+\mu$$ is

MHT CET 2023 10th May Morning Shift
120

If a line $$\mathrm{L}$$ is the line of intersection of the planes $$2 x+3 y+z=1$$ and $$x+3 y+2 z=2$$. If line $$\mathrm{L}$$ makes an angle $$\alpha$$ with the positive $$\mathrm{X}$$-axis, then the value of $$\sec \alpha$$ is

MHT CET 2023 9th May Evening Shift
121

The shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$ and $$\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$$ is

MHT CET 2023 9th May Evening Shift
122

The co-ordinates of the point, where the line $$\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+5}{4}$$ meets the plane $$2 x+4 y-\mathrm{z}=3$$, are

MHT CET 2023 9th May Evening Shift
123

The equation of a plane, containing the line of intersection of the planes $$2 x-y-4=0$$ and $$y+2 z-4=0$$ and passing through the point $$(2,1,0)$$, is

MHT CET 2023 9th May Evening Shift
124

The foot of the perpendicular drawn from the origin to the plane is $$(4,-2,5)$$, then the Cartesian equation of the plane is

MHT CET 2023 9th May Morning Shift
125

A vector $$\overrightarrow{\mathrm{n}}$$ is inclined to $$\mathrm{X}$$-axis at $$45^{\circ}$$, $$\mathrm{Y}$$-axis at $$60^{\circ}$$ and at an acute angle to Z-axis If $$\overrightarrow{\mathrm{n}}$$ is normal to a plane passing through the point $$(-\sqrt{2}, 1,1)$$, then equation of the plane is

MHT CET 2023 9th May Morning Shift
126

If the Cartesian equation of a line is $$6 x-2=3 y+1=2 z-2$$, then the vector equation of the line is

MHT CET 2023 9th May Morning Shift
127

The distance between parallel lines

$$\frac{x-1}{2}=\frac{y-2}{-2}=\frac{z-3}{1}$$ and

$$\frac{x}{2}=\frac{y}{-2}=\frac{z}{1}$$ is :

MHT CET 2022 11th August Evening Shift
128

A line makes the same angle '$$\alpha$$' with each of the $$x$$ and $$y$$ axes. If the angle '$$\theta$$', which it makes with the $$z$$-axis, is such that $$\sin ^2 \theta=2 \sin ^2 \alpha$$, then the angle $$\alpha$$ is

MHT CET 2022 11th August Evening Shift
129

A tetrahedron has verticles $$P(1,2,1), Q(2,1,3), R(-1,1,2)$$ and $$O(0,0,0)$$. Then the angle between the faces $$O P Q$$ and $$P Q R$$ is

MHT CET 2022 11th August Evening Shift
130

The Cartesian equation of a line passing through $$(1,2,3)$$ and parallel to $$x-y+2 z=5$$ and $$3 x+y+z=6$$ is

MHT CET 2022 11th August Evening Shift
131

The equation of the plane passing through the points $$(2,3,1),(4,-5,3)$$ and parallel to $$X$$-axis is

MHT CET 2022 11th August Evening Shift
132

The equation of the plane which passes through (2, $$-$$3, 1) and is normal to the line joining the points (3, 4, $$-$$1) and (2, $$-$$1, 5) is given by

MHT CET 2021 24th September Evening Shift
133

If $$G(3,-5, r)$$ is the centroid of $$\triangle A B C$$, where $$A \equiv(7,-8,1), B \equiv(p, q, 5), C \equiv(q+1,5 p, 0)$$ are vertices of the triangle $$A B C$$, then the values of $$p, q, r$$ are respectively

MHT CET 2021 24th September Evening Shift
134

If the lines $$\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$$ and $$\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$$ are perpendicular to each other, then $$\lambda=$$

MHT CET 2021 24th September Evening Shift
135

The co-ordinates of the points on the line $$\frac{x+2}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$$ at a distance of 12 units from the point A($$-$$2, 1, $$-$$1) are

MHT CET 2021 24th September Evening Shift
136

If the vector equation of the plane $$\bar{r}=(2 \hat{i}+\hat{k})+\lambda \hat{i}+\mu(\hat{i}+2 \hat{j}-3 \hat{k})$$ in scalar product form is given by $$\overline{\mathrm{r}} \cdot(3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=\alpha$$ then $$\alpha=$$

MHT CET 2021 24th September Evening Shift
137

If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-2}{1}=\frac{y+m}{2}=\frac{z-2}{1}$$ intersect each other, then value of m is

MHT CET 2021 24th September Morning Shift
138

The length of perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\overline{\mathrm{r}}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$$ is

MHT CET 2021 24th September Morning Shift
139

Equation of the plane passing through the point $$(1,2,3)$$ and parallel to the plane $$2 x+3 y-4 z=0 $$

MHT CET 2021 24th September Morning Shift
140

If $$\mathrm{A}$$ and $$\mathrm{B}$$ are the foot of the perpendicular drawn from the point $$\mathrm{Q}(\mathrm{a}, \mathrm{b}, \mathrm{c})$$ to the planes $$\mathrm{YZ}$$ and $$\mathrm{ZX}$$ respectively, then the equation of the plane through the points $$\mathrm{A}, \mathrm{B}$$, and $$\mathrm{O}$$ is (where $$\mathrm{O}$$ is the origin)

MHT CET 2021 24th September Morning Shift
141

If $$\mathrm{A}=(-2,2,3), \mathrm{B}=(3,2,2), \mathrm{C}=(4,-3,5)$$ and $$\mathrm{D}=(7,-5,-1)$$ Then the projection of $$\overline{\mathrm{AB}}$$ on $$\overline{\mathrm{CD}}$$ is

MHT CET 2021 24th September Morning Shift
142

The Cartesian equation of a plane which passes through the points $$\mathrm{A}(2,2,2)$$ and making equal nonzero intercepts on the co-ordinate axes is

MHT CET 2021 23rd September Evening Shift
143

The co-ordinates of the foot of the perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$$ are

MHT CET 2021 23rd September Evening Shift
144

If A(3, 2, $$-$$1), B($$-$$2, 2, $$-$$3) and D($$-$$2, 5, $$-$$4) are the vertices of a parallelogram, then the area of the parallelogram is

MHT CET 2021 23th September Morning Shift
145

The distance between the parallel lines $$\frac{x-2}{3}=\frac{y-4}{5}=\frac{z-1}{2}$$ and $$\frac{x-1}{3}=\frac{y+2}{5}=\frac{z+3}{2}$$ is

MHT CET 2021 23th September Morning Shift
146

The coordinates of the foot of the perpendicular drawn from the origin to the plane $$2 x+y-2 z=18$$ are

MHT CET 2021 23th September Morning Shift
147

The vector equation of the line passing through $$\mathrm{P}(1,2,3)$$ and $$\mathrm{Q}(2,3,4)$$ is

MHT CET 2021 23th September Morning Shift
148

Equation of planes parallel to the plane $$x-2y+2z+4=0$$ which are at a distance of one unit from the point (1, 2, 3) are

MHT CET 2021 23th September Morning Shift
149

The area of triangle with vertices $$(1,2,0),(1,0, a)$$ and $$(0,3,1)$$ is $$\sqrt{6}$$ sq. units, then the values of '$$a$$' are

MHT CET 2021 22th September Evening Shift
150

If $$\mathrm{G}(4,3,3)$$ is the centroid of the triangle $$\mathrm{ABC}$$ whose vertices are $$\mathrm{A}(\mathrm{a}, 3,1), \mathrm{B}(4,5, \mathrm{~b})$$ and $$C(6, c, 5)$$, then the values of $$a, b, c$$ are

MHT CET 2021 22th September Evening Shift
151

The d.r.s. of the normal to the plane passing through the origin and the line of intersection of the planes $$x+2 y+3 z=4$$ and $$4 x+3 y+2 z=1$$ are

MHT CET 2021 22th September Evening Shift
152

The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then value of $$\alpha \beta$$ is

MHT CET 2021 22th September Evening Shift
153

If the points $$P(4,5, x), Q(3, y, 4)$$ and $$R(5,8,0)$$ are collinear, then the value of $$x+y$$ is

MHT CET 2021 22th September Evening Shift
154

A line drawn from a point $$A(-2,-2,3)$$ and parallel to the line $$\frac{x}{-2}=\frac{y}{2}=\frac{z}{-1}$$ meets the $$\mathrm{YOZ}$$ plane in point $$\mathrm{P}$$, then the co-ordinates of the point $$\mathrm{P}$$ are

MHT CET 2021 22th September Evening Shift
155

The Cartesian equation of a line is $$3 x+1=6 y-2=1-z$$, then its vector equation is

MHT CET 2021 22th September Morning Shift
156

The plane $$\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$$ cuts the $$X$$-axis at A, Y-axis at B and Z-axis at C, then the area of $$\triangle \mathrm{ABC}=$$

MHT CET 2021 22th September Morning Shift
157

If a plane meets the axes $$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$$ in $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$ respectively such that centroid of $$\triangle \mathrm{ABC}$$ is $$(1,2,3)$$, then the equation of the plane is

MHT CET 2021 22th September Morning Shift
158

The shortest distance between lines $$\bar{r}=(2 \hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$$ and $$\bar{r}=(\hat{r}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+\hat{j}-5 \hat{k})$$ is

MHT CET 2021 22th September Morning Shift
159

The direction cosines $$\ell, \mathrm{m}, \mathrm{n}$$ of the line $$\frac{\mathrm{x}+2}{2}=\frac{2 \mathrm{y}-5}{3} ; \mathrm{z}=-1$$ are

MHT CET 2021 21th September Evening Shift
160

Equation of the plane passing through the point (2, 0, 5) and parallel to the vectors $$\widehat i - \widehat j + \widehat k$$ and $$3\widehat i + 2\widehat j - \widehat k$$ is

MHT CET 2021 21th September Evening Shift
161

The co-ordinates of the point $$\mathrm{P} \equiv(1,2,3)$$ and $$\mathrm{O} \equiv(0,0,0)$$, then the direction cosines of $$\overline{\mathrm{OP}}$$ are

MHT CET 2021 21th September Evening Shift
162

The equation of the plane containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ and the point $$(0,7,-7)$$ is

MHT CET 2021 21th September Evening Shift
163

The equation of a line passing through $$(3,-1,2)$$ and perpendicular to the lines $$\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$$ and $$\bar{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\mu(\hat{i}-2 \hat{j}+2 \hat{k})$$ is

MHT CET 2021 21th September Evening Shift
164

The area of the parallelogram with vertices A(1, 2, 3), B(1, 3, a), C(3, 8, 6) and D(3, 7, 3) is $$\sqrt{265}$$ sq. units, then a =

MHT CET 2021 21th September Evening Shift
165

If the lines $\frac{1-x}{3}=\frac{7 y-14}{2 \lambda}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles, then $\lambda=$

MHT CET 2021 21th September Morning Shift
166

The Cartesian equation of the plane passing through the point A(7, 8, 6) and parallel to the XY plane is

MHT CET 2021 21th September Morning Shift
167

The equation of the plane passing through $$(-2,2,2)$$ and $$(2,-2,-2)$$ and perpendicular to the plane $$9 x-13 y-3 z=0$$ is

MHT CET 2021 21th September Morning Shift
168

The Cartesian equation of the line passing through the points A(2, 2, 1) and B(1, 3, 0) is

MHT CET 2021 20th September Evening Shift
169

The Cartesian equation of the plane $$\overline{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$$ is

MHT CET 2021 20th September Evening Shift
170

The equation of the plane that contains the line of intersection of the planes. $$x+2 y+3 z-4=0$$ and $$2 x+y-z+5=0$$ and is perpendicular to the plane $$5 x+3 y-6 z+8=0$$ is

MHT CET 2021 20th September Evening Shift
171

The vector equation of the line whose Cartesian equations are y = 2 and 4x $$-$$ 3z + 5 = 0 is

MHT CET 2021 20th September Evening Shift
172

The Cartesian equation of the plane passing through the point $$(0,7,-7)$$ and containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ is

MHT CET 2021 20th September Morning Shift
173

If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$$ intersect, then the values of $$k$$ is

MHT CET 2021 20th September Morning Shift
174

The parametric equations of a line passing through the points $$\mathrm{A}(3,4,-7)$$ and $$\mathrm{B}(1,-1,6)$$ are

MHT CET 2021 20th September Morning Shift
175

The angle between a line with direction ratios 2, 2, 1 and a line joining (3, 1, 4) and (7, 2, 12) is

MHT CET 2021 20th September Morning Shift
176

If the line $$\frac{x+1}{2}=\frac{y-m}{3}=\frac{z-4}{6}$$ lies in the plane $$3 x-14 y+6 z+49=0$$, then the value of $$m$$ is

MHT CET 2021 20th September Morning Shift
177

The point $P$ lies on the line $A, B$ where $A=(2,4,5)$ and $B \equiv(1,2,3)$. If $z$ co-ordinate of point $P$ is 3 , the its $y$ co-ordinate is

MHT CET 2020 19th October Evening Shift
178

A line makes angles $\alpha, \beta, \gamma$ with the co-ordinate axes and $\alpha+\beta=90^{\circ}$, then $\gamma=$

MHT CET 2020 19th October Evening Shift
179

The equations of planes parallel to the plane $x+2 y+2 z+8=0$, which are at a distance of 2 units from the point $(1,1,2)$ are

MHT CET 2020 19th October Evening Shift
180

The equation of a plane containing the point $(1,-1,2)$ and perpendicular to the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$ is

MHT CET 2020 19th October Evening Shift
181

The equation of the line passing through $(1,2,3)$ and perpendicular to the lines $x-1=\frac{y+2}{2}=\frac{z+4}{4}$ and $\frac{x-1}{2}=\frac{y-2}{2}=z+3$ is

MHT CET 2020 19th October Evening Shift
182

If the plane $$2 x+3 y+5 z=1$$ intersects the co-ordinate axes at the points $$A, B, C$$, then the centroid of $$\triangle A B C$$ is

MHT CET 2020 16th October Evening Shift
183

The direction co-sines of the line which bisects the angle between positive direction of $$Y$$ and $$Z$$ axes are

MHT CET 2020 16th October Evening Shift
184

The angle between the lines $$\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}$$ and $$\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}$$ is

MHT CET 2020 16th October Evening Shift
185

If the line $$r=(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$$ is parallel to the plane $$r \cdot(3 \hat{i}-2 \hat{\mathbf{j}}+m \hat{\mathbf{k}})=10$$, then the value of $$m$$ is

MHT CET 2020 16th October Evening Shift
186

The points $$A(-a,-b), B(0,0), C(a, b)$$ and $$D\left(a^2, a b\right)$$ are

MHT CET 2020 16th October Evening Shift
187

The cosine of the angle included between the lines $$\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ and $$\mathbf{r}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\mu(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$ where $$\lambda, \mu \in R$$ is.

MHT CET 2020 16th October Evening Shift
188

If the foot of perpendicular drawn from the origin to the plane is $$(3,2,1)$$, then the equation of plane is

MHT CET 2020 16th October Morning Shift
189

The angle between the line $$r =(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})$$ and the plane $$\mathbf{r} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=8$$ is

MHT CET 2020 16th October Morning Shift
190

The direction cosines of a line which is perpendicular to lines whose direction ratios are $$3,-2,4$$ and $$1,3,-2$$ are

MHT CET 2020 16th October Morning Shift
191

If the lines given by $$\frac{x-1}{2 \lambda}=\frac{y-1}{-5}=\frac{z-1}{2}$$ and $$\frac{x+2}{\lambda}=\frac{y+3}{\lambda}=\frac{z+5}{1}$$ are parallel, then the value of $$\lambda$$ is

MHT CET 2020 16th October Morning Shift
192

The vector equation of the plane $\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\mu(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ in scalar product form is $\mathbf{r} \cdot(3 \hat{\mathbf{i}}+2 \hat{\mathbf{k}})=\alpha$, then $\alpha=\ldots$

MHT CET 2019 3rd May Morning Shift
193

The direction ratios of the normal to the plane passing through origin and the line of intersection of the planes $x+2 y+3 z=4$ and $4 x+3 y+2 z=1$ are $\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
194

If line $\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$ are perpendicular to each other then $\lambda=$ ............

MHT CET 2019 3rd May Morning Shift
195

Which of the following can not be the direction cosines of a line?

MHT CET 2019 3rd May Morning Shift
196

If lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\lambda}{2}=\frac{z}{1}$ intersect each other, then $\lambda=\ldots \ldots$

MHT CET 2019 2nd May Evening Shift
197

Equations of planes parallel to the plane $x-2 y+2 z+4=0$ which are at a distance of one unit from the point $(1,2,3)$ are ............

MHT CET 2019 2nd May Evening Shift
198

If $P(6,10,10), Q(1,0,-5), R(6,-10, \lambda)$ are vertices of a triangle right angled at $Q$, then value of $\lambda$ is ............

MHT CET 2019 2nd May Evening Shift
199

If the foot of the perpendicular drawn from the point $(0,0,0)$ to the plane is $(4,-2,-5)$ then the equation of the plane is .............

MHT CET 2019 2nd May Evening Shift
200

If $G(3,-5, r)$ is centroid of triangle $A B C$ where $A(7,-8,1), B(p, q, 5)$ and $C(q+1,5 p, 0)$ are vertices of a triangle then values of $p, q, r$ are respectively ......

MHT CET 2019 2nd May Morning Shift
201

The angle between lines $\frac{x-2}{2}=\frac{y-3}{-2}=\frac{z-5}{1}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-5}{2}$ is ............

MHT CET 2019 2nd May Morning Shift
202

If the line passes through the points $P(6,-1,2), Q(8,-7,2 \lambda)$ and $R(5,2,4)$ then value of $\lambda$ is ...........

MHT CET 2019 2nd May Morning Shift
203

The co-ordinates of the foot of perpendicular drawn from origin to the plane $2 x-y+5 z-3=0$ are $\ldots \ldots$

MHT CET 2019 2nd May Morning Shift
204

The equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line joining the points $(-3,1,2)$ and $(2,3,4)$ is

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12