# Three Dimensional Geometry · Mathematics · MHT CET

Start Practice## MCQ (Single Correct Answer)

MHT CET 2023 14th May Evening Shift

The mirror image of $$\mathrm{P}(2,4,-1)$$ in the plane $$x-y+2 z-2=0$$ is $$(\mathrm{a}, \mathrm{b}, \mathrm{c})$$, then the value of $$a+b+c$$ is...

MHT CET 2023 14th May Evening Shift

If the lines $$\frac{x-\mathrm{k}}{2}=\frac{y+1}{3}=\frac{\mathrm{z}-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-\frac{9}{2}}{2}=\frac{\mathrm{z}}{1}$$ inters...

MHT CET 2023 14th May Evening Shift

A vector parallel to the line of intersection of the planes $$\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$$ and $$\bar{r} \cdot(\hat{i}+4 \hat{j}-2 \ha...

MHT CET 2023 14th May Evening Shift

The length of the perpendicular drawn from the point $$(1,2,3)$$ to the line $$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$$ is

MHT CET 2023 14th May Morning Shift

If $$\triangle \mathrm{ABC}$$ is right angled at $$\mathrm{A}$$, where $$A \equiv(4,2, x), \mathrm{B} \equiv(3,1,8)$$ and $$C \equiv(2,-1,2)$$, then t...

MHT CET 2023 14th May Morning Shift

The angle between the lines, whose direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ satisfy the equations $$l+\mathrm{m}+\mathrm{n}=0$$ and $$2 l^2+2 ...

MHT CET 2023 14th May Morning Shift

Equation of the plane passing through $$(1,-1,2)$$ and perpendicular to the planes $$x+2 y-2 z=4$$ and $$3 x+2 y+z=6$$ is

MHT CET 2023 14th May Morning Shift

A line with positive direction cosines passes through the point $$\mathrm{P}(2,-1,2)$$ and makes equal angles with the co-ordinate axes. The line meet...

MHT CET 2023 14th May Morning Shift

If the shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda}$$ and $$\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}$$ is $$...

MHT CET 2023 14th May Morning Shift

Consider the lines $$\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{\mathrm{z}+1}{2}$$
$$\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{\mathrm{z}-3...

MHT CET 2023 13th May Evening Shift

A tetrahedron has vertices at $$P(2,1,3), Q(-1,1,2), R(1,2,1)$$ and $$O(0,0,0)$$, then angle between the faces $$O P Q$$ and $$P Q R$$ is

MHT CET 2023 13th May Evening Shift

A plane is parallel to two lines whose direction ratios are $$2,0,-2$$ and $$-2,2,0$$ and it contains the point $$(2,2,2)$$. If it cuts coordinate axe...

MHT CET 2023 13th May Evening Shift

The incentre of the $$\triangle A B C$$, whose vertices are $$A(0,2,1), B(-2,0,0)$$ and $$C(-2,0,2)$$, is

MHT CET 2023 13th May Evening Shift

The acute angle between the line joining the points $$(2,1,-3),(-3,1,7)$$ and a line parallel to $$\frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5}$$ through t...

MHT CET 2023 13th May Evening Shift

The foot of the perpendicular from the point $$(1,2,3)$$ on the line $$\mathbf{r}=(6 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})+\lambda(3...

MHT CET 2023 13th May Evening Shift

The distance of the point $$(1,6,2)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-y+z=...

MHT CET 2023 13th May Morning Shift

A line drawn from the point $$\mathrm{A}(1,3,2)$$ parallel to the line $$\frac{x}{2}=\frac{y}{4}=\frac{z}{1}$$, intersects the plane $$3 x+y+2 z=5$$ i...

MHT CET 2023 13th May Morning Shift

A line $$\mathrm{L}_1$$ passes through the point, whose p. v. (position vector) $$3 \hat{i}$$, is parallel to the vector $$-\hat{\mathrm{i}}+\hat{\mat...

MHT CET 2023 13th May Morning Shift

The equation of the line passing through the point $$(-1,3,-2)$$ and perpendicular to each of the lines $$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$$ and $$...

MHT CET 2023 13th May Morning Shift

If $$A(1,4,2)$$ and $$C(5,-7,1)$$ are two vertices of triangle $$A B C$$ and $$G\left(\frac{4}{3}, 0, \frac{-2}{3}\right)$$ is centroid of the triangl...

MHT CET 2023 13th May Morning Shift

The distance of the point $$(-1,-5,-10)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-...

MHT CET 2023 12th May Evening Shift

The equation of the line, passing through $$(1,2,3)$$ and parallel to planes $$x-y+2 z=5$$ and $$3 x+y+z=6$$, is

MHT CET 2023 12th May Evening Shift

The shortest distance (in units) between the lines $$\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$$ and $$\bar{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda...

MHT CET 2023 12th May Evening Shift

The length (in units) of the projection of the line segment, joining the points $$(5,-1,4)$$ and $$(4,-1,3)$$, on the plane $$x+y+z=7$$ is

MHT CET 2023 12th May Evening Shift

If the volume of tetrahedron, whose vertices are $$\mathrm{A}(1,2,3), \mathrm{B}(-3,-1,1), \mathrm{C}(2,1,3)$$ and $$D(-1,2, x)$$ is $$\frac{11}{6}$$ ...

MHT CET 2023 12th May Evening Shift

Equation of plane containing the line $$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$$ and perpendicular to the plane containing the lines $$\frac{x}{3}=\frac{...

MHT CET 2023 12th May Morning Shift

The centroid of tetrahedron with vertices at $$\mathrm{A}(-1,2,3), \mathrm{B}(3,-2,1), \mathrm{C}(2,1,3)$$ and $$\mathrm{D}(-1,-2,4)$$ is

MHT CET 2023 12th May Morning Shift

A plane is parallel to two lines whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts the co-ordinat...

MHT CET 2023 12th May Morning Shift

The equation of the plane through $$(-1,1,2)$$ whose normal makes equal acute angles with co-ordinate axes is

MHT CET 2023 12th May Morning Shift

The distance of the point $$\mathrm{P}(-2,4,-5)$$ from the line $$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$$ is

MHT CET 2023 12th May Morning Shift

If the line $$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$$ and $$\frac{7-7 x}{3 \mathrm{p}}=\frac{y-5}{1}=\frac{6-\mathrm{z}}{5}$$ are at right an...

MHT CET 2023 11th May Evening Shift

If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $x-3=\frac{y-\mathrm{k}}{2}=\mathrm{z}$ intersect, then the value of $\mathrm{k}$ is

MHT CET 2023 11th May Evening Shift

If the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$$ meets the plane $$x+2 y+3 z=15$$ at the point $$P$$, then the distance of $$\mathrm{P}$$ fro...

MHT CET 2023 11th May Evening Shift

The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x...

MHT CET 2023 11th May Evening Shift

The angle between the line $$\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$$ and plane $$x-2 y-\lambda z=3$$ is $$\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\ri...

MHT CET 2023 11th May Morning Shift

If the direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ of two lines are connected by relations $$l-5 \mathrm{~m}+3 \mathrm{n}=0$$ and $$7 l^2+5 \math...

MHT CET 2023 11th May Morning Shift

The mirror image of the point $$(1,2,3)$$ in a plane is $$\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$$. Thus, the point _________ lies on thi...

MHT CET 2023 11th May Morning Shift

A plane is parallel to two lines, whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts co-ordinate a...

MHT CET 2023 11th May Morning Shift

The lines $$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5} \quad$$ and $$\frac{x+2}{4}=\frac{y-1}{3}=\frac{z+1}{2}$$

MHT CET 2023 11th May Morning Shift

The vector equation of the line $$2 x+4=3 y+1=6 z-3$$ is

MHT CET 2023 10th May Evening Shift

The plane through the intersection of planes $$x+y+z=1$$ and $$2 x+3 y-z+4=0$$ and parallel to $$\mathrm{Y}$$-axis also passes through the point...

MHT CET 2023 10th May Evening Shift

The perpendicular distance of the origin from the plane $$x-3 y+4 z-6=0$$ is

MHT CET 2023 10th May Evening Shift

Two lines $$\frac{x-3}{1}=\frac{y+1}{3}=\frac{z-6}{-1}$$ and $$\frac{x+5}{7}=\frac{y-2}{-6}=\frac{z-3}{4} \quad$$ intersect at the point R. Then refle...

MHT CET 2023 10th May Morning Shift

The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then the value of $$\alpha^2+\alpha \beta+\beta^...

MHT CET 2023 10th May Morning Shift

Let $$\mathrm{P}$$ be a plane passing through the points $$(2,1,0),(4,1,1)$$ and $$(5,0,1)$$ and $$R$$ be the point $$(2,1,6)$$. Then image of $$R$$ i...

MHT CET 2023 10th May Morning Shift

The co-ordinates of the point, where the line through $$A(3,4,1)$$ and $$B(5,1,6)$$ crosses the $$\mathrm{XZ}$$-plane, are

MHT CET 2023 10th May Morning Shift

$$\mathrm{ABC}$$ is a triangle in a plane with vertices $$\mathrm{A}(2,3,5), \mathrm{B}(-1,3,2)$$ and $$\mathrm{C}(\lambda, 5, \mu)$$. If median throu...

MHT CET 2023 9th May Evening Shift

If a line $$\mathrm{L}$$ is the line of intersection of the planes $$2 x+3 y+z=1$$ and $$x+3 y+2 z=2$$. If line $$\mathrm{L}$$ makes an angle $$\alpha...

MHT CET 2023 9th May Evening Shift

The shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$ and $$\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$$ is

MHT CET 2023 9th May Evening Shift

The co-ordinates of the point, where the line $$\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+5}{4}$$ meets the plane $$2 x+4 y-\mathrm{z}=3$$, are

MHT CET 2023 9th May Evening Shift

The equation of a plane, containing the line of intersection of the planes $$2 x-y-4=0$$ and $$y+2 z-4=0$$ and passing through the point $$(2,1,0)$$, ...

MHT CET 2023 9th May Morning Shift

The foot of the perpendicular drawn from the origin to the plane is $$(4,-2,5)$$, then the Cartesian equation of the plane is

MHT CET 2023 9th May Morning Shift

A vector $$\overrightarrow{\mathrm{n}}$$ is inclined to $$\mathrm{X}$$-axis at $$45^{\circ}$$, $$\mathrm{Y}$$-axis at $$60^{\circ}$$ and at an acute a...

MHT CET 2023 9th May Morning Shift

If the Cartesian equation of a line is $$6 x-2=3 y+1=2 z-2$$, then the vector equation of the line is

MHT CET 2022 11th August Evening Shift

The distance between parallel lines $$\frac{x-1}{2}=\frac{y-2}{-2}=\frac{z-3}{1}$$ and $$\frac{x}{2}=\frac{y}{-2}=\frac{z}{1}$$ is :...

MHT CET 2022 11th August Evening Shift

A line makes the same angle '$$\alpha$$' with each of the $$x$$ and $$y$$ axes. If the angle '$$\theta$$', which it makes with the $$z$$-axis, is such...

MHT CET 2022 11th August Evening Shift

A tetrahedron has verticles $$P(1,2,1), Q(2,1,3), R(-1,1,2)$$ and $$O(0,0,0)$$. Then the angle between the faces $$O P Q$$ and $$P Q R$$ is

MHT CET 2022 11th August Evening Shift

The Cartesian equation of a line passing through $$(1,2,3)$$ and parallel to $$x-y+2 z=5$$ and $$3 x+y+z=6$$ is

MHT CET 2022 11th August Evening Shift

The equation of the plane passing through the points $$(2,3,1),(4,-5,3)$$ and parallel to $$X$$-axis is

MHT CET 2021 24th September Evening Shift

The equation of the plane which passes through (2, $$-$$3, 1) and is normal to the line joining the points (3, 4, $$-$$1) and (2, $$-$$1, 5) is given ...

MHT CET 2021 24th September Evening Shift

If $$G(3,-5, r)$$ is the centroid of $$\triangle A B C$$, where $$A \equiv(7,-8,1), B \equiv(p, q, 5), C \equiv(q+1,5 p, 0)$$ are vertices of the tria...

MHT CET 2021 24th September Evening Shift

If the lines $$\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$$ and $$\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$$ are perpendicular to each...

MHT CET 2021 24th September Evening Shift

The co-ordinates of the points on the line $$\frac{x+2}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$$ at a distance of 12 units from the point A($$-$$2, 1, $$-$$1...

MHT CET 2021 24th September Evening Shift

If the vector equation of the plane $$\bar{r}=(2 \hat{i}+\hat{k})+\lambda \hat{i}+\mu(\hat{i}+2 \hat{j}-3 \hat{k})$$ in scalar product form is given b...

MHT CET 2021 24th September Morning Shift

If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-2}{1}=\frac{y+m}{2}=\frac{z-2}{1}$$ intersect each other, then value of m is...

MHT CET 2021 24th September Morning Shift

The length of perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\overline{\mathrm{r}}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+...

MHT CET 2021 24th September Morning Shift

Equation of the plane passing through the point $$(1,2,3)$$ and parallel to the plane $$2 x+3 y-4 z=0
$$

MHT CET 2021 24th September Morning Shift

If $$\mathrm{A}$$ and $$\mathrm{B}$$ are the foot of the perpendicular drawn from the point $$\mathrm{Q}(\mathrm{a}, \mathrm{b}, \mathrm{c})$$ to the ...

MHT CET 2021 24th September Morning Shift

If $$\mathrm{A}=(-2,2,3), \mathrm{B}=(3,2,2), \mathrm{C}=(4,-3,5)$$ and $$\mathrm{D}=(7,-5,-1)$$ Then the projection of $$\overline{\mathrm{AB}}$$ on ...

MHT CET 2021 23rd September Evening Shift

The Cartesian equation of a plane which passes through the points $$\mathrm{A}(2,2,2)$$ and making equal nonzero intercepts on the co-ordinate axes is...

MHT CET 2021 23rd September Evening Shift

The co-ordinates of the foot of the perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\vec{r}=(11 \hat{i}-2 \hat{j}-8 \...

MHT CET 2021 23th September Morning Shift

If A(3, 2, $$-$$1), B($$-$$2, 2, $$-$$3) and D($$-$$2, 5, $$-$$4) are the vertices of a parallelogram, then the area of the parallelogram is

MHT CET 2021 23th September Morning Shift

The distance between the parallel lines $$\frac{x-2}{3}=\frac{y-4}{5}=\frac{z-1}{2}$$ and $$\frac{x-1}{3}=\frac{y+2}{5}=\frac{z+3}{2}$$ is

MHT CET 2021 23th September Morning Shift

The coordinates of the foot of the perpendicular drawn from the origin to the plane $$2 x+y-2 z=18$$ are

MHT CET 2021 23th September Morning Shift

The vector equation of the line passing through $$\mathrm{P}(1,2,3)$$ and $$\mathrm{Q}(2,3,4)$$ is

MHT CET 2021 23th September Morning Shift

Equation of planes parallel to the plane $$x-2y+2z+4=0$$ which are at a distance of one unit from the point (1, 2, 3) are

MHT CET 2021 22th September Evening Shift

The area of triangle with vertices $$(1,2,0),(1,0, a)$$ and $$(0,3,1)$$ is $$\sqrt{6}$$ sq. units, then the values of '$$a$$' are

MHT CET 2021 22th September Evening Shift

If $$\mathrm{G}(4,3,3)$$ is the centroid of the triangle $$\mathrm{ABC}$$ whose vertices are $$\mathrm{A}(\mathrm{a}, 3,1), \mathrm{B}(4,5, \mathrm{~b...

MHT CET 2021 22th September Evening Shift

The d.r.s. of the normal to the plane passing through the origin and the line of intersection of the planes $$x+2 y+3 z=4$$ and $$4 x+3 y+2 z=1$$ are...

MHT CET 2021 22th September Evening Shift

The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then value of $$\alpha \beta$$ is

MHT CET 2021 22th September Evening Shift

If the points $$P(4,5, x), Q(3, y, 4)$$ and $$R(5,8,0)$$ are collinear, then the value of $$x+y$$ is

MHT CET 2021 22th September Evening Shift

A line drawn from a point $$A(-2,-2,3)$$ and parallel to the line $$\frac{x}{-2}=\frac{y}{2}=\frac{z}{-1}$$ meets the $$\mathrm{YOZ}$$ plane in point ...

MHT CET 2021 22th September Morning Shift

The Cartesian equation of a line is $$3 x+1=6 y-2=1-z$$, then its vector equation is

MHT CET 2021 22th September Morning Shift

The plane $$\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$$ cuts the $$X$$-axis at A, Y-axis at B and Z-axis at C, then the area of $$\triangle \mathrm{ABC}=$...

MHT CET 2021 22th September Morning Shift

If a plane meets the axes $$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$$ in $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$ respectively such that centroid of $$\trian...

MHT CET 2021 22th September Morning Shift

The shortest distance between lines $$\bar{r}=(2 \hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$$ and $$\bar{r}=(\hat{r}-\hat{j}+2 \hat{k})+\mu...

MHT CET 2021 21th September Evening Shift

The direction cosines $$\ell, \mathrm{m}, \mathrm{n}$$ of the line $$\frac{\mathrm{x}+2}{2}=\frac{2 \mathrm{y}-5}{3} ; \mathrm{z}=-1$$ are

MHT CET 2021 21th September Evening Shift

Equation of the plane passing through the point (2, 0, 5) and parallel to the vectors $$\widehat i - \widehat j + \widehat k$$ and $$3\widehat i + 2\w...

MHT CET 2021 21th September Evening Shift

The co-ordinates of the point $$\mathrm{P} \equiv(1,2,3)$$ and $$\mathrm{O} \equiv(0,0,0)$$, then the direction cosines of $$\overline{\mathrm{OP}}$$ ...

MHT CET 2021 21th September Evening Shift

The equation of the plane containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ and the point $$(0,7,-7)$$ is

MHT CET 2021 21th September Evening Shift

The equation of a line passing through $$(3,-1,2)$$ and perpendicular to the lines $$\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\ha...

MHT CET 2021 21th September Evening Shift

The area of the parallelogram with vertices A(1, 2, 3), B(1, 3, a), C(3, 8, 6) and D(3, 7, 3) is $$\sqrt{265}$$ sq. units, then a =

MHT CET 2021 21th September Morning Shift

If the lines $\frac{1-x}{3}=\frac{7 y-14}{2 \lambda}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles, the...

MHT CET 2021 21th September Morning Shift

The Cartesian equation of the plane passing through the point A(7, 8, 6) and parallel to the XY plane is

MHT CET 2021 21th September Morning Shift

The equation of the plane passing through $$(-2,2,2)$$ and $$(2,-2,-2)$$ and perpendicular to the plane $$9 x-13 y-3 z=0$$ is

MHT CET 2021 20th September Evening Shift

The Cartesian equation of the line passing through the points A(2, 2, 1) and B(1, 3, 0) is

MHT CET 2021 20th September Evening Shift

The Cartesian equation of the plane $$\overline{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm...

MHT CET 2021 20th September Evening Shift

The equation of the plane that contains the line of intersection of the planes. $$x+2 y+3 z-4=0$$ and $$2 x+y-z+5=0$$ and is perpendicular to the plan...

MHT CET 2021 20th September Evening Shift

The vector equation of the line whose Cartesian equations are y = 2 and 4x $$-$$ 3z + 5 = 0 is

MHT CET 2021 20th September Morning Shift

The Cartesian equation of the plane passing through the point $$(0,7,-7)$$ and containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ is...

MHT CET 2021 20th September Morning Shift

If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$$ intersect, then the values of $$k$$ is...

MHT CET 2021 20th September Morning Shift

The parametric equations of a line passing through the points $$\mathrm{A}(3,4,-7)$$ and $$\mathrm{B}(1,-1,6)$$ are

MHT CET 2021 20th September Morning Shift

The angle between a line with direction ratios 2, 2, 1 and a line joining (3, 1, 4) and (7, 2, 12) is

MHT CET 2021 20th September Morning Shift

If the line $$\frac{x+1}{2}=\frac{y-m}{3}=\frac{z-4}{6}$$ lies in the plane $$3 x-14 y+6 z+49=0$$, then the value of $$m$$ is

MHT CET 2020 16th October Morning Shift

If the foot of perpendicular drawn from the origin to the plane is $$(3,2,1)$$, then the equation of plane is

MHT CET 2020 16th October Morning Shift

The angle between the line $$r =(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})$$ and the plane $$\m...

MHT CET 2020 16th October Morning Shift

The direction cosines of a line which is perpendicular to lines whose direction ratios are $$3,-2,4$$ and $$1,3,-2$$ are

MHT CET 2020 16th October Morning Shift

If the lines given by $$\frac{x-1}{2 \lambda}=\frac{y-1}{-5}=\frac{z-1}{2}$$ and $$\frac{x+2}{\lambda}=\frac{y+3}{\lambda}=\frac{z+5}{1}$$ are paralle...