Three Dimensional Geometry · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

The lines $\frac{6 x-6}{18}=\frac{y+1}{3}=\frac{z-1}{5} \quad$ and $\frac{3 x+6}{12}=\frac{y-1}{3}=\frac{z+1}{2}$ are $\ldots$

MHT CET 2025 26th April Evening Shift
2

The line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{1}$ intersects the XY plane and the YZ plane at points A and B respectively. The equation of line through the points A and B is

MHT CET 2025 26th April Evening Shift
3

The distance of the point $\mathrm{A}(3,-4,5)$ from the plane $2 x+5 y-6 z=16$ measured along the line $\frac{x}{2}=\frac{y}{1}=\frac{z}{-2}$ is

MHT CET 2025 26th April Evening Shift
4

The direction cosines of a normal to the plane passing through $(4,2,3),(-1,4,2)$ and $(3,2,1)$ are …..

MHT CET 2025 26th April Evening Shift
5

The equation of the plane passing through the point $(1,1,1)$ and through the line of intersection of $x+2 y-z+1=0$ and $3 x-y-4 z+3=0$ is

MHT CET 2025 26th April Evening Shift
6

If the foot of the perpendicular drawn from the origin to a plane is $\mathrm{P}(-1,-1,2)$, then equation of the plane is

MHT CET 2025 26th April Morning Shift
7

The angle between lines whose direction cosines satisfy the equation $l+m+n=0$ and $l^2-\mathrm{m}^2-\mathrm{n}^2=0$, is

MHT CET 2025 26th April Morning Shift
8

A triangle ABC is formed by $\mathrm{A}(1,-1,0)$, $B(3,5,3), C(-11,-5,6)$. The equation of internal angle bisector of angle $A$ is

MHT CET 2025 26th April Morning Shift
9

The mirror image of the point $\mathrm{P}(-1,2,-4)$ in the plane $x-y-2 z+1=0$ is

MHT CET 2025 26th April Morning Shift
10

If the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{6}=1$ cuts the co-ordinate axes at points $A, B, C$ respectively, then area of the triangle ABC is

MHT CET 2025 26th April Morning Shift
11

If the plane $\frac{x}{2}-\frac{y}{3}-\frac{\mathrm{z}}{5}=1$ cuts the co-ordinate axes in points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then the area of the triangle $A B C$ is

MHT CET 2025 25th April Evening Shift
12

If the lines $x=a y-1=z-2$ and $x=3 y-2=\mathrm{bz}-2(\mathrm{ab} \neq 0)$ are coplanar, then

MHT CET 2025 25th April Evening Shift
13

The Cartesian equation of the plane $\overline{\mathrm{r}}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})$ is

MHT CET 2025 25th April Evening Shift
14

If the line $\frac{x-3}{2}=\frac{y+5}{-1}=\frac{z+2}{2}$ lies in the plane $\alpha x+3 y-z+\beta=0$, then values of $\alpha$ and $\beta$ respectively are ….

MHT CET 2025 25th April Evening Shift
15

The lines $\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\overline{\mathrm{r}}=(4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$ are

MHT CET 2025 25th April Evening Shift
16

The lines $\frac{x-0}{1}=\frac{y-2}{2}=\frac{z+3}{\lambda}$ and $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{\lambda}$ are coplanar and $p$ is the plane containing these lines, then which of following point does not lie on the plane.

MHT CET 2025 25th April Morning Shift
17

The length of the foot of the perpendicular from the point $\left(1, \frac{3}{2}, 2\right)$ to the plane $2 x-2 y+4 z+17=0$ is

MHT CET 2025 25th April Morning Shift
18

If the lines $\frac{1-x}{2}=\frac{7 y+4}{2 \lambda}=\frac{2 z-5}{2}$ and $\frac{7-7 x}{3 \lambda}=\frac{y-1}{7}=\frac{6-\mathrm{z}}{5}$ are at right angle, then the value of $\lambda$ is

MHT CET 2025 25th April Morning Shift
19
In 3-dimensional space, the equation $x^2-8 x+12=0$ represents ....
MHT CET 2025 25th April Morning Shift
20

Let M and N be foots of the perpendiculars drawn from the point $\mathrm{P}(\mathrm{a}, \mathrm{a}, \mathrm{a})$ on the lines $x-y=0, \mathrm{z}=1$ and $x+y=0, \mathrm{z}=-1$ respectively and if $\angle \mathrm{MPN}=90^{\circ}$ then $\mathrm{a}^2=$

MHT CET 2025 25th April Morning Shift
21

If $\theta$ is the angle between the lines whose direction cosines are given by $6 \mathrm{mn}-2 \mathrm{n} l+5 l \mathrm{~m}=0$ and $3 l+\mathrm{m}+5 \mathrm{n}=0$, then $\sin \theta=$

MHT CET 2025 23rd April Evening Shift
22
The line passing through the points $(a, 1,6)$ and $(3,4, \mathrm{~b})$ crosses the $y z$-plane at $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$, then the value of $(3 a+4 b)$ is
MHT CET 2025 23rd April Evening Shift
23

The angle between the lines $x=y, z=0$ and $y=0, \mathrm{z}=0$ is

MHT CET 2025 23rd April Evening Shift
24

If the foot of the perpendicular drawn from the origin to a plane is $\mathrm{P}(2,-1,4)$, then the equation of the plane is

MHT CET 2025 23rd April Evening Shift
25

Let the plane passing through point $(2,1,-1)$ containing line joining the points $(1,3,2)$ and $(1,2,1)$ makes intercepts $\mathrm{p}, \mathrm{q}, \mathrm{r}$ on co-ordinate axes, then $\mathrm{p}+\mathrm{q}+\mathrm{r}=$

MHT CET 2025 23rd April Evening Shift
26

The angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=6$ is $\cos ^{-1} \sqrt{\frac{5}{14}}$, then the value of $\lambda$ is

MHT CET 2025 23rd April Evening Shift
27

The equation of the line passing through the point of intersection of $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ and also through the point ( $2,1,-2$ ) is

MHT CET 2025 23rd April Morning Shift
28

If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then the value of k is

MHT CET 2025 23rd April Morning Shift
29

The distance of the point $\mathrm{P}(3,4,4)$ from the point of intersection of the line joining the points $\mathrm{Q}(3,-4,-5), \mathrm{R}(2,-3,1)$ and the plane $2 x+y+z=7$ is

MHT CET 2025 23rd April Morning Shift
30

The equation of the plane containing the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and perpendicular to the plane containing the lines $\frac{x}{2}=\frac{y}{3}=\frac{z}{1}$ and $\frac{x}{3}=\frac{y}{2}=\frac{z}{1}$ is

MHT CET 2025 23rd April Morning Shift
31

The equation of the plane containing the line $\frac{x+1}{2}=\frac{y+2}{1}=\frac{z-2}{3}$ and the point $(1,-1,3)$ is

MHT CET 2025 23rd April Morning Shift
32

The line L is passing through $(1,2,3)$. The distance of any point on the line L from the line $\overline{\mathrm{r}}=(3 \lambda-1) \hat{\mathrm{i}}+(-2 \lambda+3) \hat{\mathrm{j}}+(4+\lambda) \hat{\mathrm{k}}$ is constant. Then the line L does not pass through the point

MHT CET 2025 22nd April Evening Shift
33

The distance of the plane $\overline{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$ from the origin is

MHT CET 2025 22nd April Evening Shift
34

If the angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=4$ is $\cos ^{-1} \sqrt{\frac{5}{14}}$, then the value of $\lambda$ is

MHT CET 2025 22nd April Evening Shift
35

If the point $(1, \alpha, \beta)$ lies on the line of the shortest distance between the lines $\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$ and $\frac{x+2}{-1}=\frac{y+6}{2}, \mathrm{z}=1$, then $\alpha+\beta=$

MHT CET 2025 22nd April Evening Shift
36

The angle between the lines $x-3 y-4=0,4 y-z+5=0$ and $x+3 y-11=0,2 y-z+6=0$ is

MHT CET 2025 22nd April Evening Shift
37

If the planes $\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}})=3$ and $\overline{\mathrm{r}} \cdot(4 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\mu \hat{\mathrm{k}})=5$ are parallel, then $\lambda+\mu=$

MHT CET 2025 22nd April Morning Shift
38

The perimeter of a square whose two sides have equations $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}$ and $\frac{x}{2}=\frac{y-1}{3}=\frac{z+1}{4}$ is

MHT CET 2025 22nd April Morning Shift
39

If the sum of the squares of the distances of a point $\mathrm{P}(x, y, z)$ from the three co-ordinate axes is 324 , then the distance of point P from the origin is ….

MHT CET 2025 22nd April Morning Shift
40

The angle between the lines $3 x=2 y=-\mathrm{z}$ and $-x=6 y=-4 z$ is

MHT CET 2025 22nd April Morning Shift
41

If the lines $\frac{x-1}{2}=\frac{y+1}{\mathrm{k}}=\frac{\mathrm{z}}{2}$ and $\frac{x+1}{5}=\frac{y+1}{2}=\frac{\mathrm{z}}{\mathrm{k}}$ are coplanar, then the equation of the plane containing these lines are

MHT CET 2025 22nd April Morning Shift
42

Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3 y-\alpha z+\beta=0$, then the value of $(\beta-\alpha)$ is equal to

MHT CET 2025 22nd April Morning Shift
43

The direction ratios of the line of intersection of the planes $x-y+z-5=0$ and $x-3 y-6=0$, are

MHT CET 2025 21st April Evening Shift
44

The distance between the line $\overline{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ and the plane $\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=4$ is

MHT CET 2025 21st April Evening Shift
45

The angle between the lines whose direction cosines are $\frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{-\sqrt{3}}{2}$ and $\frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}$ is

MHT CET 2025 21st April Evening Shift
46

The length of the altitude through the point $D$ of tetrahedron where the vertices of the tetrahedron are $A(2,3,1), B(4,1,-2), C(6,3,7), D(-5,-4,8)$, is

MHT CET 2025 21st April Evening Shift
47

The angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{z}{n}$ and $\frac{x+1}{\mathrm{~m}}=\frac{y-3}{\mathrm{n}}=\frac{\mathrm{z}-1}{l}$, where $l>\mathrm{m}>\mathrm{n}$ and $1, \mathrm{~m}, \mathrm{n}$ are roots of the equation $x^3+x^2-4 x-4=0$, is

MHT CET 2025 21st April Evening Shift
48

The distance of the point $\mathrm{P}(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is

MHT CET 2025 21st April Evening Shift
49

The shortest distance between the lines $\bar{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$ is

MHT CET 2025 21st April Morning Shift
50

If the distance of the point $\mathrm{P}(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$ is 5 units, then the foot of the perpendicular from P to the plane is

MHT CET 2025 21st April Morning Shift
51

The equation of the plane containing the line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-4}{-2}$ and the point $(0,5,0)$ is

MHT CET 2025 21st April Morning Shift
52

The equation of the plane passing through the point of intersection of the planes $2 x-y+z-3=0$ and $4 x-3 y+5 z+9=0$ and parallel to the line $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z-3}{5}$ is $\alpha x+\beta y+\gamma z+d=0$ Then $\alpha+\beta+\gamma+d=$

MHT CET 2025 20th April Evening Shift
53

The distance of the point $(2,4,0)$ from the point of intersection of the lines $\frac{x+6}{3}=\frac{y}{2}=\frac{z+1}{1}$ and $\frac{x-7}{4}=\frac{y-9}{3}=\frac{z-4}{2}$ is

MHT CET 2025 20th April Evening Shift
54

The co-ordinates of the point where the line joining the points $(2,-3,1)$ and $(3,-4,-5)$ and intersects the plane $2 x+y+z=7$ are

MHT CET 2025 20th April Evening Shift
55

If the line $\frac{x+1}{3}=\frac{y-k}{7}=\frac{z-4}{8}$ lies in the plane $2 x+\mathrm{p} y+7 z-41=0$ which is perpendicular to the plane $x+4 y-2 z+13=0$ then $\mathrm{k}=$

MHT CET 2025 20th April Evening Shift
56

The direction cosines of the line $x-y+2 z=5$ and $3 x+y+z=6$ are

MHT CET 2025 20th April Morning Shift
57

If the angle between the planes $x-2 y+3 z-5=0$ and $x+\alpha y+2 z+7=0$ is $\cos ^{-1}\left(\frac{1}{14}\right)$ then the difference between the values of $\alpha$ is

MHT CET 2025 20th April Morning Shift
58

If the shortest distance between the lines $\frac{x-\mathrm{k}}{2}=\frac{y-4}{3}=\frac{\mathrm{z}-3}{4}$ and $\frac{x-2}{4}=\frac{y-4}{6}=\frac{\mathrm{z}-7}{8}$ is $\frac{13}{\sqrt{29}}$, then $\mathrm{k}=$

MHT CET 2025 20th April Morning Shift
59

The acute angle between the lines $x=-2+2 \mathrm{t}, y=3-4 \mathrm{t}, \mathrm{z}=-4+\mathrm{t}$ and $x=-2-\mathrm{t}, y=3+2 \mathrm{t}, \mathrm{z}=-4+3 \mathrm{t}$ is

MHT CET 2025 20th April Morning Shift
60

If the plane $\frac{x}{3}+\frac{y}{2}-\frac{z}{4}=1$ cuts the co-ordinate axes at points $\mathrm{A}, \mathrm{B}$ and C , then the area of the triangle ABC is

MHT CET 2025 20th April Morning Shift
61

A plane passes through $(2,1,2)$ and $(1,2,1)$ and parallel to the line $2 x=3 y$ and $\mathrm{z}=1$, then the plane also passes through the point

MHT CET 2025 19th April Evening Shift
62
The equation of the plane passing through the line of intersection of the planes $x+y+z=1$ and $3 x+4 y+5 z=2$ and perpendicular to the XY- plane is
MHT CET 2025 19th April Evening Shift
63

The coordinates of the foot of the perpendicular drawn from a point $\mathrm{P}(-1,1,2)$ to the plane $2 x-3 y+z-11=0$ are

MHT CET 2025 19th April Evening Shift
64

The lines $\frac{x-3}{1}=\frac{y-2}{1}=\frac{z-5}{-k}$ and $\frac{x-4}{\mathrm{k}}=\frac{y-3}{1}=\frac{\mathrm{z}-3}{2}$ are coplanar, hence $\mathrm{k}=$

MHT CET 2025 19th April Evening Shift
65

If the shortest distance between the lines $\bar{r}_1=\alpha \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}), \lambda \in \mathbb{R}, \alpha>0 \quad$ and $\bar{r}_2=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}), \mu \in R$, is 9 , then the value of $\alpha$ is

MHT CET 2025 19th April Evening Shift
66
The Cartesian equation of plane through $\mathrm{A}(7,8,6)$ and parallel to the XY plane is
MHT CET 2025 19th April Morning Shift
67
The distance of the point $(-3,2,3)$ from the line passing through $(4,6,-2)$ and having direction ratios $-1,2,3$ is $\qquad$ units.
MHT CET 2025 19th April Morning Shift
68
A plane passes through $(1,-2,1)$ and is perpendicular to the planes $2 x-2 y+z=0$ and $x-y+2 z=4$. The distance of the point $(1,2,2)$ from this plane is ________ units.
MHT CET 2025 19th April Morning Shift
69
If the sum of the squares of the distance of the point $\mathrm{P}(x, y, \mathrm{z})$ from the co-ordinate axes is 242 , then the distance of the point P from the origin is units.
MHT CET 2025 19th April Morning Shift
70
If the points $\mathrm{A}(2-x, 2,2), \mathrm{B}(2,2-y, 2)$, $\mathrm{C}(2,2,2-\mathrm{z})$ and $\mathrm{D}(1,1,1)$ are coplanar, then the locus of point $\mathrm{P}(x, y, \mathrm{z})$ is
MHT CET 2025 19th April Morning Shift
71
If the lines $\frac{3-x}{2}=\frac{5 y-2}{3 \lambda+1}=5-\mathrm{z}$ and $\frac{x+2}{-1}=\frac{1-3 y}{7}=\frac{4-z}{2 \mu}$ are at right angles, then $7 \lambda-10 \mu=$
MHT CET 2025 19th April Morning Shift
72
If the angle $\theta$ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$, then $\lambda+1=$
MHT CET 2025 19th April Morning Shift
73
If the directed line makes an angle $45^{\circ}$ and $60^{\circ}$ with the X and Y -axes respectively, then the obtuse angle $\theta$ made by the line with the Z -axis is
MHT CET 2025 19th April Morning Shift
74

The co-ordinates of the foot of the perpendicular from the point $(0,2,3)$ on the line $\frac{x+3}{5}=\frac{y+1}{2}=\frac{z+4}{3}$ is

MHT CET 2024 16th May Evening Shift
75

A line having direction ratios $1,-4,2$ intersects the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ at the points $A$ and $B$ resp., then co-ordinates of points A and B are

MHT CET 2024 16th May Evening Shift
76

A plane makes positive intercepts of unit length on each of $X$ and $Y$ axis. If it passes through the point $(-1,1,2)$ and makes angle $\theta$ with the X -axis, then $\theta$ is

MHT CET 2024 16th May Evening Shift
77

The equation of plane through the point $(2,-1,-3)$ and parallel to lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

MHT CET 2024 16th May Evening Shift
78

The equation of the plane, passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $Y$-axis is

MHT CET 2024 16th May Morning Shift
79

A line with positive direction cosines passes through the point $\mathrm{P}(2,-1,2)$ and makes equal angles with co-ordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. Then the length of the line segment PQ equals

MHT CET 2024 16th May Morning Shift
80

If the distance between the plane Ax-2y+z $=\mathrm{d}$ and the plane containing the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$ units, then $|d|$ is

MHT CET 2024 16th May Morning Shift
81

The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is

MHT CET 2024 16th May Morning Shift
82

A line makes $45^{\circ}$ angle with positive X -axis and makes equal angles with positive Y -axis ad Z-axis respectively, then the sum of the three angles which the line makes with positive X -axis, Y -axis and Z -axis is

MHT CET 2024 15th May Evening Shift
83

If the lines $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k has the value

MHT CET 2024 15th May Evening Shift
84

The vector equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$, which is perpendicular to the plane $x-y+z=0$, is

MHT CET 2024 15th May Evening Shift
85

The equation of a line passing through the point $(2,-1,1)$ and parallel to the line joining the points $\hat{i}+2 \hat{j}+2 \hat{k}$ and $-\hat{i}+4 \hat{j}+\hat{k}$ is

MHT CET 2024 15th May Evening Shift
86

The foot of the perpendicular drawn from origin to a plane is $\mathrm{M}(2,1,-2)$, then vector equation of the plane is

MHT CET 2024 15th May Evening Shift
87

Let $\mathrm{L}_1: \frac{x+2}{5}=\frac{y-3}{2}=\frac{\mathrm{z}-6}{1}$ and $\mathrm{L}_2: \frac{x-3}{4}=\frac{y+2}{3}=\frac{z-3}{5}$ be the given lines. Then the unit vector perpendicular to both $\mathrm{L}_1$ and $\mathrm{L}_2$ is

MHT CET 2024 15th May Morning Shift
88

The perpendicular distance from the origin to the plane containing the two lines $\frac{x+2}{3}=\frac{y-2}{5}=\frac{z+5}{7}$ and $\frac{x-1}{1}=\frac{y-4}{4}=\frac{z+4}{7}$, is

MHT CET 2024 15th May Morning Shift
89

Let $P(2,1,5)$ be a point in space and $Q$ be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which the vector $\overline{\mathrm{PQ}}$ is parallel to the plane $3 x-y+4 z=1$ is

MHT CET 2024 15th May Morning Shift
90

The centroid of tetrahedron with vertices $\mathrm{P}(5,-7,0), \mathrm{Q}(\mathrm{a}, 5,3), \mathrm{R}(4,-6, b)$ and $\mathrm{S}(6, \mathrm{c}, 2)$ is $(4,-3,2)$, then the value of $2 a+3 b+c$ is equal to

MHT CET 2024 15th May Morning Shift
91

A variable plane passes through the fixed point $(3,2,1)$ and meets $X, Y$ and $Z$ axes at points $A$, B and C respectively. A plane is drawn parallel to YZ - plane through A , a second plane is drawn parallel to ZX -plan through B , a third plane is drawn parallel to XY - plane through C . Then locus of the point of intersection of these three planes, is

MHT CET 2024 11th May Evening Shift
92

The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=\mathrm{z}$ is __________ units.

MHT CET 2024 11th May Evening Shift
93

If for some $\alpha \in \mathbb{R}$, the lines $\mathrm{L}_1: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\mathrm{L}_2: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line $L_2$ passes through the point

MHT CET 2024 11th May Evening Shift
94

Let $P(3,2,6)$ be a point in space and $Q$ be a point on the line $\bar{r}=\hat{i}-\hat{j}+2 \hat{k}+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which the vector $\overline{\mathrm{PQ}}$ is parallel to the plane $x-4 y+3 z=1$ is

MHT CET 2024 11th May Evening Shift
95

The perpendicular distance of the origin from the plane $2 x+y-2 z-18=0$ is

MHT CET 2024 11th May Morning Shift
96

The plane $2 x+3 y+4 z=1$ meets $X$-axis in $A$, Y -axis in B and Z -axis in C . Then the centroid of $\triangle A B C$ is

MHT CET 2024 11th May Morning Shift
97

If the lines $\frac{x+1}{-10}=\frac{y+k}{-1}=\frac{z-4}{1} \quad$ and $\frac{x+10}{-1}=\frac{y+1}{-3}=\frac{z-1}{4}$ intersect each other, then the value of $k$ is

MHT CET 2024 11th May Morning Shift
98

The equation of the line passing through the point $(3,1,2)$ and perpendicular to the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$ is

MHT CET 2024 11th May Morning Shift
99

The area of the triangle with vertices $(1,2,0)$, $(1,0,2)$ and $(0,3,1)$ is

MHT CET 2024 11th May Morning Shift
100

If the volume of tetrahedron whose vertices are $A \equiv(1,-6,10), B \equiv(-1,-3,7), C \equiv(5,-1, k)$ and $D \equiv(7,-4,7)$ is 11 cu . units, then the value of $k$ is

MHT CET 2024 11th May Morning Shift
101

The vector equation of the plane passing through the point $\mathrm{A}(1,2,-1)$ and parallel to the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+3 \hat{k}$ is

MHT CET 2024 10th May Evening Shift
102

The shortest distance between lines $\bar{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\bar{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ is

MHT CET 2024 10th May Evening Shift
103

If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then the value of k is

MHT CET 2024 10th May Evening Shift
104

The projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{CD}}$, where $A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$ and $\mathrm{D} \equiv(7,0,10)$ is

MHT CET 2024 10th May Evening Shift
105

The equation of the plane through the point $(2,-1,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

MHT CET 2024 10th May Evening Shift
106

Equation of the plane, through the points $(-1,2,-2)$ and $(-1,3,2)$ and perpendicular to $y \mathrm{z}$ - plane, is

MHT CET 2024 10th May Morning Shift
107

If the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{-1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k is equal to

MHT CET 2024 10th May Morning Shift
108

If the line, $\frac{x-3}{2}=\frac{y+2}{1}=\frac{z+4}{3}$ lies in the plane, $\ell x+m y-z=9$, then $\ell^2+m^2$ is equal to

MHT CET 2024 10th May Morning Shift
109

If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$, then $(\alpha, \beta)=$

MHT CET 2024 10th May Morning Shift
110

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,2,1)$. The distance of the plane from the point $(2,3,4)$ is

MHT CET 2024 9th May Evening Shift
111

The value of m such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z+m}{2}$ lies in the plane $2 x-4 y+z=7$ is

MHT CET 2024 9th May Evening Shift
112

A line with positive direction cosines passes through the point $\mathrm{P}(2,1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+\mathrm{z}=9$ at point Q . The length of the line segment PQ equals $\qquad$ units.

MHT CET 2024 9th May Evening Shift
113

Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle $\alpha$ with the positive X -axis, then $\cos \alpha$ equals

MHT CET 2024 9th May Evening Shift
114

The equation of the plane, passing through the point $(1,1,1)$ and perpendicular to the planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$, is

MHT CET 2024 9th May Morning Shift
115

The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$ having normal perpendicular to both the lines $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$ and $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1}$ is

MHT CET 2024 9th May Morning Shift
116

The value of m , such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-m}{2}$ lies in the plane $2 x-4 y+z=7$, is

MHT CET 2024 9th May Morning Shift
117

The length of the perpendicular from the point $\mathrm{A}(1,-2,-3)$ on the line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z+1}{-2}$ is

MHT CET 2024 9th May Morning Shift
118

If the points $(1,-1, \lambda)$ and $(-3,0,1)$ are equidistant from the plane $3 x-4 y-12 z+13=0$, then the sum of all possible values of $\lambda$ is

MHT CET 2024 4th May Evening Shift
119

Let P be a plane passing through the points $(2,1,0),(4,1,1)$ and $(5,0,1)$ and $R$ be the point $(2,1,6)$. Then image of $R$ in the plane $P$ is

MHT CET 2024 4th May Evening Shift
120

The equation of the plane, passing through the point $(-1,2,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y-2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$, is

MHT CET 2024 4th May Evening Shift
121

The co-ordinates of the point where the line through $\mathrm{A}(3,4,1)$ and $\mathrm{B}(5,1,6)$ crosses the $x y$-plane are

MHT CET 2024 4th May Evening Shift
122

The Cartesian equation of a line is $2 x-2=3 y+1=6 z-2$, then the vector equation of the line is

MHT CET 2024 4th May Evening Shift
123

The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} \quad$ and $\frac{x-1}{\mathrm{k}}=\frac{y-4}{2}=\frac{\mathrm{z}-5}{1}$ are coplanar if

MHT CET 2024 4th May Morning Shift
124

Let $\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ be two given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

MHT CET 2024 4th May Morning Shift
125

Let $a, b \in R$. If the mirror image of the point $\mathrm{p}(\mathrm{a}, 6,9)$ w.r.t. line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, b,-a-9)$, then $|a+b|$ is equal to

MHT CET 2024 4th May Morning Shift
126

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,2)$ is

MHT CET 2024 4th May Morning Shift
127

Let $\mathrm{L}_1$ $\frac{x+1}{3}=\frac{y+2}{2}=\frac{z+1}{1}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y+2}{1}=\frac{z-3}{3}$ be the given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

MHT CET 2024 3rd May Evening Shift
128

The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is

MHT CET 2024 3rd May Evening Shift
129

Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

MHT CET 2024 3rd May Evening Shift
130

If $A(-4,5, P), B(3,1,4)$ and $C(-2,0, q)$ are the vertices of a triangle $A B C$ and $G(r, q, 1)$ is its centroid, then the value of $2 p+q-r$ is equal to

MHT CET 2024 3rd May Evening Shift
131

On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane $x+y+z=2$ ?

MHT CET 2024 3rd May Evening Shift
132

Equation of the plane containing the straight line $\frac{x}{3}=\frac{y}{2}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{4}=\frac{y}{3}=\frac{z}{2}$ and $\frac{x}{2}=\frac{y}{-4}=\frac{z}{3}$ is

MHT CET 2024 3rd May Morning Shift
133

The value of $m$, such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{2 z-m}{3}$ lies in the plane $2 x-5 y+2 z=7$, is

MHT CET 2024 3rd May Morning Shift
134

The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line

MHT CET 2024 3rd May Morning Shift
135

Let $\mathrm{P}(2,3,6)$ be a point in space and Q be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which vector $\overline{\mathrm{PQ}}$ is parallel to the plane $x-4 y+4 z=1$ is

MHT CET 2024 3rd May Morning Shift
136

Distance between the parallel lines $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ and $\frac{x+4}{3}=\frac{y-3}{-2}=\frac{z+2}{1}$ is

MHT CET 2024 2nd May Evening Shift
137

The equation of the plane, passing through the mid point of the line segment of join of the points $\mathrm{P}(1,2,5)$ and $\mathrm{Q}(3,4,3)$ and perpendicular to it, is

MHT CET 2024 2nd May Evening Shift
138

The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is

MHT CET 2024 2nd May Evening Shift
139

The equation of the line, through $\mathrm{A}(1,2,3)$ and perpendicular to the vector $2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$, is

MHT CET 2024 2nd May Evening Shift
140

Let $P$ be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through $P$ and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is

MHT CET 2024 2nd May Evening Shift
141

The incentre of the triangle whose vertices are $P(0,3,0), Q(0,0,4)$ and $R(0,3,4)$ is

MHT CET 2024 2nd May Evening Shift
142

The vector equation of a line whose Cartesian equations are $y=2,4 x-3 z+5=0$ is

MHT CET 2024 2nd May Morning Shift
143

The Cartesian equation of the plane, passing through the points $(3,1,1),(1,2,3)$ and $(-1,4,2)$, is

MHT CET 2024 2nd May Morning Shift
144

The equation of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$, is

MHT CET 2024 2nd May Morning Shift
145

If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane $\ell x+m y-z=9$, then $\ell^2+m^2$ is

MHT CET 2024 2nd May Morning Shift
146

The mirror image of $$\mathrm{P}(2,4,-1)$$ in the plane $$x-y+2 z-2=0$$ is $$(\mathrm{a}, \mathrm{b}, \mathrm{c})$$, then the value of $$a+b+c$$ is

MHT CET 2023 14th May Evening Shift
147

If the lines $$\frac{x-\mathrm{k}}{2}=\frac{y+1}{3}=\frac{\mathrm{z}-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-\frac{9}{2}}{2}=\frac{\mathrm{z}}{1}$$ intersect, then the value of $$\mathrm{k}$$ is

MHT CET 2023 14th May Evening Shift
148

A vector parallel to the line of intersection of the planes $$\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$$ and $$\bar{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$$ is

MHT CET 2023 14th May Evening Shift
149

The length of the perpendicular drawn from the point $$(1,2,3)$$ to the line $$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$$ is

MHT CET 2023 14th May Evening Shift
150

If $$\triangle \mathrm{ABC}$$ is right angled at $$\mathrm{A}$$, where $$A \equiv(4,2, x), \mathrm{B} \equiv(3,1,8)$$ and $$C \equiv(2,-1,2)$$, then the value of $$x$$ is

MHT CET 2023 14th May Morning Shift
151

The angle between the lines, whose direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ satisfy the equations $$l+\mathrm{m}+\mathrm{n}=0$$ and $$2 l^2+2 \mathrm{~m}^2-\mathrm{n}^2=0$$, is

MHT CET 2023 14th May Morning Shift
152

Equation of the plane passing through $$(1,-1,2)$$ and perpendicular to the planes $$x+2 y-2 z=4$$ and $$3 x+2 y+z=6$$ is

MHT CET 2023 14th May Morning Shift
153

A line with positive direction cosines passes through the point $$\mathrm{P}(2,-1,2)$$ and makes equal angles with the co-ordinate axes. The line meets the plane $$2 x+y+z=9$$ at point $$\mathrm{Q}$$. The length of the line segment $$P Q$$ equals

MHT CET 2023 14th May Morning Shift
154

If the shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda}$$ and $$\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}$$ is $$\frac{1}{\sqrt{3}}$$, then sum of possible values of $$\lambda$$ is

MHT CET 2023 14th May Morning Shift
155

Consider the lines $$\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{\mathrm{z}+1}{2}$$

$$\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{\mathrm{z}-3}{3}$$, then the unit vector perpendicular to both $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ is

MHT CET 2023 14th May Morning Shift
156

A tetrahedron has vertices at $$P(2,1,3), Q(-1,1,2), R(1,2,1)$$ and $$O(0,0,0)$$, then angle between the faces $$O P Q$$ and $$P Q R$$ is

MHT CET 2023 13th May Evening Shift
157

A plane is parallel to two lines whose direction ratios are $$2,0,-2$$ and $$-2,2,0$$ and it contains the point $$(2,2,2)$$. If it cuts coordinate axes at $$A, B, C$$, then the volume of the tetrahedron $$O A B C$$ (in cubic units) is

MHT CET 2023 13th May Evening Shift
158

The incentre of the $$\triangle A B C$$, whose vertices are $$A(0,2,1), B(-2,0,0)$$ and $$C(-2,0,2)$$, is

MHT CET 2023 13th May Evening Shift
159

The acute angle between the line joining the points $$(2,1,-3),(-3,1,7)$$ and a line parallel to $$\frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5}$$ through the point $$(-1,0,4)$$ is

MHT CET 2023 13th May Evening Shift
160

The foot of the perpendicular from the point $$(1,2,3)$$ on the line $$\mathbf{r}=(6 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ has the coordinates

MHT CET 2023 13th May Evening Shift
161

The distance of the point $$(1,6,2)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-y+z=16$$ is

MHT CET 2023 13th May Evening Shift
162

A line drawn from the point $$\mathrm{A}(1,3,2)$$ parallel to the line $$\frac{x}{2}=\frac{y}{4}=\frac{z}{1}$$, intersects the plane $$3 x+y+2 z=5$$ in point $$\mathrm{B}$$, then co-ordinates of point $$\mathrm{B}$$ are

MHT CET 2023 13th May Morning Shift
163

A line $$\mathrm{L}_1$$ passes through the point, whose p. v. (position vector) $$3 \hat{i}$$, is parallel to the vector $$-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$$. Another line $$\mathrm{L}_2$$ passes through the point having p.v. $$\hat{i}+\hat{j}$$ is parallel to vector $$\hat{i}+\hat{k}$$, then the point of intersection of lines $$L_1$$ and $$L_2$$ has p.v.

MHT CET 2023 13th May Morning Shift
164

The equation of the line passing through the point $$(-1,3,-2)$$ and perpendicular to each of the lines $$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$$ and $$\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$$ is

MHT CET 2023 13th May Morning Shift
165

If $$A(1,4,2)$$ and $$C(5,-7,1)$$ are two vertices of triangle $$A B C$$ and $$G\left(\frac{4}{3}, 0, \frac{-2}{3}\right)$$ is centroid of the triangle $$A B C$$, then the mid point of side $$B C$$ is

MHT CET 2023 13th May Morning Shift
166

The distance of the point $$(-1,-5,-10)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-y+z=5$$ is

MHT CET 2023 13th May Morning Shift
167

The equation of the line, passing through $$(1,2,3)$$ and parallel to planes $$x-y+2 z=5$$ and $$3 x+y+z=6$$, is

MHT CET 2023 12th May Evening Shift
168

The shortest distance (in units) between the lines $$\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$$ and $$\bar{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+2 \hat{j})$$ is

MHT CET 2023 12th May Evening Shift
169

The length (in units) of the projection of the line segment, joining the points $$(5,-1,4)$$ and $$(4,-1,3)$$, on the plane $$x+y+z=7$$ is

MHT CET 2023 12th May Evening Shift
170

If the volume of tetrahedron, whose vertices are $$\mathrm{A}(1,2,3), \mathrm{B}(-3,-1,1), \mathrm{C}(2,1,3)$$ and $$D(-1,2, x)$$ is $$\frac{11}{6}$$ cubic units, then the value of $$x$$ is

MHT CET 2023 12th May Evening Shift
171

Equation of plane containing the line $$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$$ and perpendicular to the plane containing the lines $$\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$$ and $$\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$$ is

MHT CET 2023 12th May Evening Shift
172

The centroid of tetrahedron with vertices at $$\mathrm{A}(-1,2,3), \mathrm{B}(3,-2,1), \mathrm{C}(2,1,3)$$ and $$\mathrm{D}(-1,-2,4)$$ is

MHT CET 2023 12th May Morning Shift
173

A plane is parallel to two lines whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts the co-ordinate axes at $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$, then the volume of the tetrahedron $$\mathrm{OABC}$$ (in cubic units) is

MHT CET 2023 12th May Morning Shift
174

The equation of the plane through $$(-1,1,2)$$ whose normal makes equal acute angles with co-ordinate axes is

MHT CET 2023 12th May Morning Shift
175

The distance of the point $$\mathrm{P}(-2,4,-5)$$ from the line $$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$$ is

MHT CET 2023 12th May Morning Shift
176

If the line $$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$$ and $$\frac{7-7 x}{3 \mathrm{p}}=\frac{y-5}{1}=\frac{6-\mathrm{z}}{5}$$ are at right angles, then $$\mathrm{p}=$$

MHT CET 2023 12th May Morning Shift
177
If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $x-3=\frac{y-\mathrm{k}}{2}=\mathrm{z}$ intersect, then the value of $\mathrm{k}$ is
MHT CET 2023 11th May Evening Shift
178

If the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$$ meets the plane $$x+2 y+3 z=15$$ at the point $$P$$, then the distance of $$\mathrm{P}$$ from the origin is

MHT CET 2023 11th May Evening Shift
179

The equation of line passing through the point $$(1,2,3)$$ and perpendicular to the lines $$\frac{x-2}{3}=\frac{y-1}{2}=\frac{z+1}{-2}$$ and $$\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$$ is

MHT CET 2023 11th May Evening Shift
180

The angle between the line $$\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$$ and plane $$x-2 y-\lambda z=3$$ is $$\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$$, then value of $$\lambda$$ is

MHT CET 2023 11th May Evening Shift
181

If the direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ of two lines are connected by relations $$l-5 \mathrm{~m}+3 \mathrm{n}=0$$ and $$7 l^2+5 \mathrm{~m}^2-3 \mathrm{n}^2=0$$, then value of $$l+\mathrm{m}+\mathrm{n}$$ is

MHT CET 2023 11th May Morning Shift
182

The mirror image of the point $$(1,2,3)$$ in a plane is $$\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$$. Thus, the point _________ lies on this plane.

MHT CET 2023 11th May Morning Shift
183

A plane is parallel to two lines, whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts co-ordinate axes $$(\mathrm{X}, \mathrm{Y}, \mathrm{Z}$$ - axes resp.) at $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$, then the volume of the tetrahedron $$\mathrm{OABC}$$ is _________ cu. units.

MHT CET 2023 11th May Morning Shift
184

The lines $$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5} \quad$$ and $$\frac{x+2}{4}=\frac{y-1}{3}=\frac{z+1}{2}$$

MHT CET 2023 11th May Morning Shift
185

The vector equation of the line $$2 x+4=3 y+1=6 z-3$$ is

MHT CET 2023 11th May Morning Shift
186

The plane through the intersection of planes $$x+y+z=1$$ and $$2 x+3 y-z+4=0$$ and parallel to $$\mathrm{Y}$$-axis also passes through the point

MHT CET 2023 10th May Evening Shift
187

The perpendicular distance of the origin from the plane $$x-3 y+4 z-6=0$$ is

MHT CET 2023 10th May Evening Shift
188

Two lines $$\frac{x-3}{1}=\frac{y+1}{3}=\frac{z-6}{-1}$$ and $$\frac{x+5}{7}=\frac{y-2}{-6}=\frac{z-3}{4} \quad$$ intersect at the point R. Then reflection of $$\mathrm{R}$$ in the $$x y$$-plane has co-ordinates

MHT CET 2023 10th May Evening Shift
189

The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then the value of $$\alpha^2+\alpha \beta+\beta^2$$ is

MHT CET 2023 10th May Morning Shift
190

Let $$\mathrm{P}$$ be a plane passing through the points $$(2,1,0),(4,1,1)$$ and $$(5,0,1)$$ and $$R$$ be the point $$(2,1,6)$$. Then image of $$R$$ in the plane $$P$$ is

MHT CET 2023 10th May Morning Shift
191

The co-ordinates of the point, where the line through $$A(3,4,1)$$ and $$B(5,1,6)$$ crosses the $$\mathrm{XZ}$$-plane, are

MHT CET 2023 10th May Morning Shift
192

$$\mathrm{ABC}$$ is a triangle in a plane with vertices $$\mathrm{A}(2,3,5), \mathrm{B}(-1,3,2)$$ and $$\mathrm{C}(\lambda, 5, \mu)$$. If median through $$\mathrm{A}$$ is equally inclined to the co-ordinate axes, then value of $$\lambda+\mu$$ is

MHT CET 2023 10th May Morning Shift
193

If a line $$\mathrm{L}$$ is the line of intersection of the planes $$2 x+3 y+z=1$$ and $$x+3 y+2 z=2$$. If line $$\mathrm{L}$$ makes an angle $$\alpha$$ with the positive $$\mathrm{X}$$-axis, then the value of $$\sec \alpha$$ is

MHT CET 2023 9th May Evening Shift
194

The shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$ and $$\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$$ is

MHT CET 2023 9th May Evening Shift
195

The co-ordinates of the point, where the line $$\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+5}{4}$$ meets the plane $$2 x+4 y-\mathrm{z}=3$$, are

MHT CET 2023 9th May Evening Shift
196

The equation of a plane, containing the line of intersection of the planes $$2 x-y-4=0$$ and $$y+2 z-4=0$$ and passing through the point $$(2,1,0)$$, is

MHT CET 2023 9th May Evening Shift
197

The foot of the perpendicular drawn from the origin to the plane is $$(4,-2,5)$$, then the Cartesian equation of the plane is

MHT CET 2023 9th May Morning Shift
198

A vector $$\overrightarrow{\mathrm{n}}$$ is inclined to $$\mathrm{X}$$-axis at $$45^{\circ}$$, $$\mathrm{Y}$$-axis at $$60^{\circ}$$ and at an acute angle to Z-axis If $$\overrightarrow{\mathrm{n}}$$ is normal to a plane passing through the point $$(-\sqrt{2}, 1,1)$$, then equation of the plane is

MHT CET 2023 9th May Morning Shift
199

If the Cartesian equation of a line is $$6 x-2=3 y+1=2 z-2$$, then the vector equation of the line is

MHT CET 2023 9th May Morning Shift
200

The distance between parallel lines

$$\frac{x-1}{2}=\frac{y-2}{-2}=\frac{z-3}{1}$$ and

$$\frac{x}{2}=\frac{y}{-2}=\frac{z}{1}$$ is :

MHT CET 2022 11th August Evening Shift
201

A line makes the same angle '$$\alpha$$' with each of the $$x$$ and $$y$$ axes. If the angle '$$\theta$$', which it makes with the $$z$$-axis, is such that $$\sin ^2 \theta=2 \sin ^2 \alpha$$, then the angle $$\alpha$$ is

MHT CET 2022 11th August Evening Shift
202

A tetrahedron has verticles $$P(1,2,1), Q(2,1,3), R(-1,1,2)$$ and $$O(0,0,0)$$. Then the angle between the faces $$O P Q$$ and $$P Q R$$ is

MHT CET 2022 11th August Evening Shift
203

The Cartesian equation of a line passing through $$(1,2,3)$$ and parallel to $$x-y+2 z=5$$ and $$3 x+y+z=6$$ is

MHT CET 2022 11th August Evening Shift
204

The equation of the plane passing through the points $$(2,3,1),(4,-5,3)$$ and parallel to $$X$$-axis is

MHT CET 2022 11th August Evening Shift
205

The equation of the plane which passes through (2, $$-$$3, 1) and is normal to the line joining the points (3, 4, $$-$$1) and (2, $$-$$1, 5) is given by

MHT CET 2021 24th September Evening Shift
206

If $$G(3,-5, r)$$ is the centroid of $$\triangle A B C$$, where $$A \equiv(7,-8,1), B \equiv(p, q, 5), C \equiv(q+1,5 p, 0)$$ are vertices of the triangle $$A B C$$, then the values of $$p, q, r$$ are respectively

MHT CET 2021 24th September Evening Shift
207

If the lines $$\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$$ and $$\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$$ are perpendicular to each other, then $$\lambda=$$

MHT CET 2021 24th September Evening Shift
208

The co-ordinates of the points on the line $$\frac{x+2}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$$ at a distance of 12 units from the point A($$-$$2, 1, $$-$$1) are

MHT CET 2021 24th September Evening Shift
209

If the vector equation of the plane $$\bar{r}=(2 \hat{i}+\hat{k})+\lambda \hat{i}+\mu(\hat{i}+2 \hat{j}-3 \hat{k})$$ in scalar product form is given by $$\overline{\mathrm{r}} \cdot(3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=\alpha$$ then $$\alpha=$$

MHT CET 2021 24th September Evening Shift
210

If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-2}{1}=\frac{y+m}{2}=\frac{z-2}{1}$$ intersect each other, then value of m is

MHT CET 2021 24th September Morning Shift
211

The length of perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\overline{\mathrm{r}}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$$ is

MHT CET 2021 24th September Morning Shift
212

Equation of the plane passing through the point $$(1,2,3)$$ and parallel to the plane $$2 x+3 y-4 z=0 $$

MHT CET 2021 24th September Morning Shift
213

If $$\mathrm{A}$$ and $$\mathrm{B}$$ are the foot of the perpendicular drawn from the point $$\mathrm{Q}(\mathrm{a}, \mathrm{b}, \mathrm{c})$$ to the planes $$\mathrm{YZ}$$ and $$\mathrm{ZX}$$ respectively, then the equation of the plane through the points $$\mathrm{A}, \mathrm{B}$$, and $$\mathrm{O}$$ is (where $$\mathrm{O}$$ is the origin)

MHT CET 2021 24th September Morning Shift
214

If $$\mathrm{A}=(-2,2,3), \mathrm{B}=(3,2,2), \mathrm{C}=(4,-3,5)$$ and $$\mathrm{D}=(7,-5,-1)$$ Then the projection of $$\overline{\mathrm{AB}}$$ on $$\overline{\mathrm{CD}}$$ is

MHT CET 2021 24th September Morning Shift
215

The Cartesian equation of a plane which passes through the points $$\mathrm{A}(2,2,2)$$ and making equal nonzero intercepts on the co-ordinate axes is

MHT CET 2021 23rd September Evening Shift
216

The co-ordinates of the foot of the perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$$ are

MHT CET 2021 23rd September Evening Shift
217

If A(3, 2, $$-$$1), B($$-$$2, 2, $$-$$3) and D($$-$$2, 5, $$-$$4) are the vertices of a parallelogram, then the area of the parallelogram is

MHT CET 2021 23th September Morning Shift
218

The distance between the parallel lines $$\frac{x-2}{3}=\frac{y-4}{5}=\frac{z-1}{2}$$ and $$\frac{x-1}{3}=\frac{y+2}{5}=\frac{z+3}{2}$$ is

MHT CET 2021 23th September Morning Shift
219

The coordinates of the foot of the perpendicular drawn from the origin to the plane $$2 x+y-2 z=18$$ are

MHT CET 2021 23th September Morning Shift
220

The vector equation of the line passing through $$\mathrm{P}(1,2,3)$$ and $$\mathrm{Q}(2,3,4)$$ is

MHT CET 2021 23th September Morning Shift
221

Equation of planes parallel to the plane $$x-2y+2z+4=0$$ which are at a distance of one unit from the point (1, 2, 3) are

MHT CET 2021 23th September Morning Shift
222

The area of triangle with vertices $$(1,2,0),(1,0, a)$$ and $$(0,3,1)$$ is $$\sqrt{6}$$ sq. units, then the values of '$$a$$' are

MHT CET 2021 22th September Evening Shift
223

If $$\mathrm{G}(4,3,3)$$ is the centroid of the triangle $$\mathrm{ABC}$$ whose vertices are $$\mathrm{A}(\mathrm{a}, 3,1), \mathrm{B}(4,5, \mathrm{~b})$$ and $$C(6, c, 5)$$, then the values of $$a, b, c$$ are

MHT CET 2021 22th September Evening Shift
224

The d.r.s. of the normal to the plane passing through the origin and the line of intersection of the planes $$x+2 y+3 z=4$$ and $$4 x+3 y+2 z=1$$ are

MHT CET 2021 22th September Evening Shift
225

The line $$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$$ lies in the plane $$x+3 y-\alpha z+\beta=0$$, then value of $$\alpha \beta$$ is

MHT CET 2021 22th September Evening Shift
226

If the points $$P(4,5, x), Q(3, y, 4)$$ and $$R(5,8,0)$$ are collinear, then the value of $$x+y$$ is

MHT CET 2021 22th September Evening Shift
227

A line drawn from a point $$A(-2,-2,3)$$ and parallel to the line $$\frac{x}{-2}=\frac{y}{2}=\frac{z}{-1}$$ meets the $$\mathrm{YOZ}$$ plane in point $$\mathrm{P}$$, then the co-ordinates of the point $$\mathrm{P}$$ are

MHT CET 2021 22th September Evening Shift
228

The Cartesian equation of a line is $$3 x+1=6 y-2=1-z$$, then its vector equation is

MHT CET 2021 22th September Morning Shift
229

The plane $$\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$$ cuts the $$X$$-axis at A, Y-axis at B and Z-axis at C, then the area of $$\triangle \mathrm{ABC}=$$

MHT CET 2021 22th September Morning Shift
230

If a plane meets the axes $$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$$ in $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$ respectively such that centroid of $$\triangle \mathrm{ABC}$$ is $$(1,2,3)$$, then the equation of the plane is

MHT CET 2021 22th September Morning Shift
231

The shortest distance between lines $$\bar{r}=(2 \hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$$ and $$\bar{r}=(\hat{r}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+\hat{j}-5 \hat{k})$$ is

MHT CET 2021 22th September Morning Shift
232

The direction cosines $$\ell, \mathrm{m}, \mathrm{n}$$ of the line $$\frac{\mathrm{x}+2}{2}=\frac{2 \mathrm{y}-5}{3} ; \mathrm{z}=-1$$ are

MHT CET 2021 21th September Evening Shift
233

Equation of the plane passing through the point (2, 0, 5) and parallel to the vectors $$\widehat i - \widehat j + \widehat k$$ and $$3\widehat i + 2\widehat j - \widehat k$$ is

MHT CET 2021 21th September Evening Shift
234

The co-ordinates of the point $$\mathrm{P} \equiv(1,2,3)$$ and $$\mathrm{O} \equiv(0,0,0)$$, then the direction cosines of $$\overline{\mathrm{OP}}$$ are

MHT CET 2021 21th September Evening Shift
235

The equation of the plane containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ and the point $$(0,7,-7)$$ is

MHT CET 2021 21th September Evening Shift
236

The equation of a line passing through $$(3,-1,2)$$ and perpendicular to the lines $$\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$$ and $$\bar{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\mu(\hat{i}-2 \hat{j}+2 \hat{k})$$ is

MHT CET 2021 21th September Evening Shift
237

The area of the parallelogram with vertices A(1, 2, 3), B(1, 3, a), C(3, 8, 6) and D(3, 7, 3) is $$\sqrt{265}$$ sq. units, then a =

MHT CET 2021 21th September Evening Shift
238

If the lines $\frac{1-x}{3}=\frac{7 y-14}{2 \lambda}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles, then $\lambda=$

MHT CET 2021 21th September Morning Shift
239

The Cartesian equation of the plane passing through the point A(7, 8, 6) and parallel to the XY plane is

MHT CET 2021 21th September Morning Shift
240

The equation of the plane passing through $$(-2,2,2)$$ and $$(2,-2,-2)$$ and perpendicular to the plane $$9 x-13 y-3 z=0$$ is

MHT CET 2021 21th September Morning Shift
241

The Cartesian equation of the line passing through the points A(2, 2, 1) and B(1, 3, 0) is

MHT CET 2021 20th September Evening Shift
242

The Cartesian equation of the plane $$\overline{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$$ is

MHT CET 2021 20th September Evening Shift
243

The equation of the plane that contains the line of intersection of the planes. $$x+2 y+3 z-4=0$$ and $$2 x+y-z+5=0$$ and is perpendicular to the plane $$5 x+3 y-6 z+8=0$$ is

MHT CET 2021 20th September Evening Shift
244

The vector equation of the line whose Cartesian equations are y = 2 and 4x $$-$$ 3z + 5 = 0 is

MHT CET 2021 20th September Evening Shift
245

The Cartesian equation of the plane passing through the point $$(0,7,-7)$$ and containing the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$$ is

MHT CET 2021 20th September Morning Shift
246

If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$$ intersect, then the values of $$k$$ is

MHT CET 2021 20th September Morning Shift
247

The parametric equations of a line passing through the points $$\mathrm{A}(3,4,-7)$$ and $$\mathrm{B}(1,-1,6)$$ are

MHT CET 2021 20th September Morning Shift
248

The angle between a line with direction ratios 2, 2, 1 and a line joining (3, 1, 4) and (7, 2, 12) is

MHT CET 2021 20th September Morning Shift
249

If the line $$\frac{x+1}{2}=\frac{y-m}{3}=\frac{z-4}{6}$$ lies in the plane $$3 x-14 y+6 z+49=0$$, then the value of $$m$$ is

MHT CET 2021 20th September Morning Shift
250

The point $P$ lies on the line $A, B$ where $A=(2,4,5)$ and $B \equiv(1,2,3)$. If $z$ co-ordinate of point $P$ is 3 , the its $y$ co-ordinate is

MHT CET 2020 19th October Evening Shift
251

A line makes angles $\alpha, \beta, \gamma$ with the co-ordinate axes and $\alpha+\beta=90^{\circ}$, then $\gamma=$

MHT CET 2020 19th October Evening Shift
252

The equations of planes parallel to the plane $x+2 y+2 z+8=0$, which are at a distance of 2 units from the point $(1,1,2)$ are

MHT CET 2020 19th October Evening Shift
253

The equation of a plane containing the point $(1,-1,2)$ and perpendicular to the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$ is

MHT CET 2020 19th October Evening Shift
254

The equation of the line passing through $(1,2,3)$ and perpendicular to the lines $x-1=\frac{y+2}{2}=\frac{z+4}{4}$ and $\frac{x-1}{2}=\frac{y-2}{2}=z+3$ is

MHT CET 2020 19th October Evening Shift
255

If the plane $$2 x+3 y+5 z=1$$ intersects the co-ordinate axes at the points $$A, B, C$$, then the centroid of $$\triangle A B C$$ is

MHT CET 2020 16th October Evening Shift
256

The direction co-sines of the line which bisects the angle between positive direction of $$Y$$ and $$Z$$ axes are

MHT CET 2020 16th October Evening Shift
257

The angle between the lines $$\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}$$ and $$\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}$$ is

MHT CET 2020 16th October Evening Shift
258

If the line $$r=(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$$ is parallel to the plane $$r \cdot(3 \hat{i}-2 \hat{\mathbf{j}}+m \hat{\mathbf{k}})=10$$, then the value of $$m$$ is

MHT CET 2020 16th October Evening Shift
259

The points $$A(-a,-b), B(0,0), C(a, b)$$ and $$D\left(a^2, a b\right)$$ are

MHT CET 2020 16th October Evening Shift
260

The cosine of the angle included between the lines $$\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ and $$\mathbf{r}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\mu(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$ where $$\lambda, \mu \in R$$ is.

MHT CET 2020 16th October Evening Shift
261

If the foot of perpendicular drawn from the origin to the plane is $$(3,2,1)$$, then the equation of plane is

MHT CET 2020 16th October Morning Shift
262

The angle between the line $$r =(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})$$ and the plane $$\mathbf{r} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=8$$ is

MHT CET 2020 16th October Morning Shift
263

The direction cosines of a line which is perpendicular to lines whose direction ratios are $$3,-2,4$$ and $$1,3,-2$$ are

MHT CET 2020 16th October Morning Shift
264

If the lines given by $$\frac{x-1}{2 \lambda}=\frac{y-1}{-5}=\frac{z-1}{2}$$ and $$\frac{x+2}{\lambda}=\frac{y+3}{\lambda}=\frac{z+5}{1}$$ are parallel, then the value of $$\lambda$$ is

MHT CET 2020 16th October Morning Shift
265

The vector equation of the plane $\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\mu(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ in scalar product form is $\mathbf{r} \cdot(3 \hat{\mathbf{i}}+2 \hat{\mathbf{k}})=\alpha$, then $\alpha=\ldots$

MHT CET 2019 3rd May Morning Shift
266

The direction ratios of the normal to the plane passing through origin and the line of intersection of the planes $x+2 y+3 z=4$ and $4 x+3 y+2 z=1$ are $\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
267

If line $\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$ are perpendicular to each other then $\lambda=$ ............

MHT CET 2019 3rd May Morning Shift
268

Which of the following can not be the direction cosines of a line?

MHT CET 2019 3rd May Morning Shift
269

If lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\lambda}{2}=\frac{z}{1}$ intersect each other, then $\lambda=\ldots \ldots$

MHT CET 2019 2nd May Evening Shift
270

Equations of planes parallel to the plane $x-2 y+2 z+4=0$ which are at a distance of one unit from the point $(1,2,3)$ are ............

MHT CET 2019 2nd May Evening Shift
271

If $P(6,10,10), Q(1,0,-5), R(6,-10, \lambda)$ are vertices of a triangle right angled at $Q$, then value of $\lambda$ is ............

MHT CET 2019 2nd May Evening Shift
272

If the foot of the perpendicular drawn from the point $(0,0,0)$ to the plane is $(4,-2,-5)$ then the equation of the plane is .............

MHT CET 2019 2nd May Evening Shift
273

If $G(3,-5, r)$ is centroid of triangle $A B C$ where $A(7,-8,1), B(p, q, 5)$ and $C(q+1,5 p, 0)$ are vertices of a triangle then values of $p, q, r$ are respectively ......

MHT CET 2019 2nd May Morning Shift
274

The angle between lines $\frac{x-2}{2}=\frac{y-3}{-2}=\frac{z-5}{1}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-5}{2}$ is ............

MHT CET 2019 2nd May Morning Shift
275

If the line passes through the points $P(6,-1,2), Q(8,-7,2 \lambda)$ and $R(5,2,4)$ then value of $\lambda$ is ...........

MHT CET 2019 2nd May Morning Shift
276

The co-ordinates of the foot of perpendicular drawn from origin to the plane $2 x-y+5 z-3=0$ are $\ldots \ldots$

MHT CET 2019 2nd May Morning Shift
277

The equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line joining the points $(-3,1,2)$ and $(2,3,4)$ is

MHT CET 2019 2nd May Morning Shift
EXAM MAP