1
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\quad f(x)=\left\{\begin{array}{cc}\frac{9^x-2 \cdot 3^x+1}{\log (1+3 x) \cdot \tan 2 x} & , \text { if } x \neq 0 \\ a(\log b)^c & , \text { if } x=0\end{array}\right.$ is continuous at $x=0$, then $\mathrm{a}+\mathrm{b}+\mathrm{c}=$

A

$\frac{31}{6}$

B

$\frac{1}{6}$

C

$\frac{5}{6}$

D

$\frac{3}{20}$

2
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Define $f(x)=\left\{\begin{array}{cl}b-a x & , \text { if } x<2 \\ 3 & , \text { if } x=2 \\ a+2 b x & , \text { if } x>2\end{array}\right.$ and if $\lim _{x \rightarrow 2} f(x)$ exists, then $\frac{a}{b}=$

A

1

B

-1

C

$\frac{2}{3}$

D

$\frac{3}{2}$

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f(x)= \begin{cases}\frac{x^4-5 x^2+4}{|(x-1)(x-2)|} & , x \neq 1,2 \\ 6 & , x=1 \\ 12 & , x=2\end{cases}$

Then $\mathrm{f}(x)$ is continuous on the set

A

$\mathbb{R}-\{1\}$

B

$\mathbb{R}-\{2\}$

C

$\mathbb{R}$

D

$\quad \mathbb{R}-\{1,2\}$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 0} \frac{\mathrm{e}^{x^2}-\cos 3 x}{\sin x \log (1+2 x)}= $$

A

$\frac{3}{2}$

B

$\frac{-3}{2}$

C

$\frac{11}{2}$

D

$\frac{-11}{2}$

MHT CET Subjects
EXAM MAP