1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The eccentricity of the curve represented by $x=3(\cos t+\sin t), y=4(\cos t-\sin t)$ is

A
$\frac{\sqrt{7}}{4}$
B
$\frac{7}{16}$
C
$\frac{\sqrt{7}}{3}$
D
$\frac{\sqrt{8}}{4}$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The foci of the conic $25 x^2+16 y^2-150 x=175$ are

A
$(0, \pm 3)$
B
$(3, \pm 3)$
C
$(0, \pm 5)$
D
$(5, \pm 5)$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

AOB is the positive quadrant of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$ in which $\mathrm{OA}=5, \mathrm{OB}=3$. The area between the arc AB and the chord AB of the ellipse in sq. units is

A
$\frac{3}{5}(\pi-2)$
B
$\frac{15}{2}(\pi-2)$
C
$\frac{3}{10}(\pi-2)$
D
$\frac{15}{4}(\pi-2)$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of two ellipses are $\frac{x^2}{4}+\frac{y^2}{2}=1$ and $\frac{x^2}{36}+\frac{y^2}{\mathrm{~b}^2}=1$. If the product of their eccentricities is $\frac{\sqrt{2}}{3}$, then the product of the length of the major axis and minor axis of the second ellipse is

A
$12 \sqrt{5}$
B
720
C
$6 \sqrt{20}$
D
$48 \sqrt{5}$
MHT CET Subjects
EXAM MAP