1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f(x)= \begin{cases}\frac{x^4-5 x^2+4}{|(x-1)(x-2)|} & , x \neq 1,2 \\ 6 & , x=1 \\ 12 & , x=2\end{cases}$

Then $\mathrm{f}(x)$ is continuous on the set

A

$\mathbb{R}-\{1\}$

B

$\mathbb{R}-\{2\}$

C

$\mathbb{R}$

D

$\quad \mathbb{R}-\{1,2\}$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 0} \frac{\mathrm{e}^{x^2}-\cos 3 x}{\sin x \log (1+2 x)}= $$

A

$\frac{3}{2}$

B

$\frac{-3}{2}$

C

$\frac{11}{2}$

D

$\frac{-11}{2}$

3
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)=\left\{\begin{array}{cl}\frac{\cos a x-\cos b x}{\cos c x-\cos b x} & , \text { if } x \neq 0 \\ -1 & , \text { if } x=0\end{array}\right.$ is continuous at $x=0$, then $\mathrm{a}^2, \mathrm{~b}^2, \mathrm{c}^2$ are in

A

Geometric progression

B

Arithmetic progression

C

Harmonic progression

D

Arithmetico-Geometric progression

$$ $$
4
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to \infty } \frac{(2 x+1)^{50}+(2 x+2)^{50}+(2 x+3)^{50}+\cdots+(2 x+100)^{50}}{(2 x)^{50}+(10)^{50}}= $$

A

50

B

100

C

25

D

200

MHT CET Subjects
EXAM MAP