1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\lim _\limits{x \rightarrow 0} \frac{x}{|x|+x^2}$ is

A
1
B
$-1$
C
0
D
does not exist
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{1+\cos \pi x}{\pi(1-x)^2}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)$ is equal to

A
$\frac{\pi}{2}$
B
$\frac{2}{\pi}$
C
$\frac{\pi^2}{4}$
D
$\frac{4}{\pi^2}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let K be the set of all real values of $x$, where the function $\mathrm{f}(x)=\sin |x|-|x|+2(x-\pi) \cos |x|$ is not differentiable. Then the set K is

A
$\{0\}$
B
an empty set
C
$\{\pi\}$
D
$\{0, \pi\}$
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}$ defined on $$\left(-\frac{1}{3}, \frac{1}{3}\right)$$ by $$\mathrm{f}(x)=\left\{\begin{array}{cc} \frac{1}{x} \log \left(\frac{1+3 x}{1-2 x}\right) & , \quad x \neq 0 \\ \mathrm{k} & , \quad x=0 \end{array}\right.$$ is continuous at $$x=0$$, then $$\mathrm{k}$$ is

A
6
B
1
C
5
D
$$-$$5
MHT CET Subjects
EXAM MAP