1
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\begin{aligned} & \text { If the function } \mathrm{f}(\mathrm{x})=1+\sin \frac{\pi}{2}, \quad-\infty<\mathrm{x} \leq 1 \\ & =\mathrm{ax}+\mathrm{b}, \quad 1<\mathrm{x}<3 \\ & =6 \tan \frac{x \pi}{12}, \quad 3 \leq x<6 \\ \end{aligned}$$

is continuous in $$(-\infty, 6)$$, then the values of $$\mathrm{a}$$ and $$\mathrm{b}$$ are respectively.

A
1, 1
B
2, 1
C
0, 2
D
2, 0
2
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^2+x-3}=$$

A
$$\frac{1}{5}$$
B
$$\frac{1}{10}$$
C
$$\frac{-1}{10}$$
D
$$\frac{-1}{5}$$
3
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$a=\lim _\limits{n \rightarrow \infty} \frac{1+2+3+\ldots+n}{n^2}$$ and $$b=\lim _\limits{n \rightarrow \infty} \frac{1^2+2^2+3^2+\ldots+n^2}{n^3}$$, then

A
a = b
B
2a = 3b
C
a = 2b
D
3a = 2b
4
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x) = {{{4^{x - \pi }} + {4^{x - \pi }} - 2} \over {{{(x - \pi )}^2}}}$$, for $$x \ne \pi $$, is continuous at $$x=\pi$$, then k =

A
$$2\log2$$
B
$$(\log2)^2$$
C
$$-(\log2)^2$$
D
$$8(\log2)^2$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12