1
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

\begin{aligned} & \text { If the function } \mathrm{f}(\mathrm{x})=1+\sin \frac{\pi}{2}, \quad-\infty<\mathrm{x} \leq 1 \\ & =\mathrm{ax}+\mathrm{b}, \quad 1<\mathrm{x}<3 \\ & =6 \tan \frac{x \pi}{12}, \quad 3 \leq x<6 \\ \end{aligned}

is continuous in $$(-\infty, 6)$$, then the values of $$\mathrm{a}$$ and $$\mathrm{b}$$ are respectively.

A
1, 1
B
2, 1
C
0, 2
D
2, 0
2
MHT CET 2021 21th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^2+x-3}=$$

A
$$\frac{1}{5}$$
B
$$\frac{1}{10}$$
C
$$\frac{-1}{10}$$
D
$$\frac{-1}{5}$$
3
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$a=\lim _\limits{n \rightarrow \infty} \frac{1+2+3+\ldots+n}{n^2}$$ and $$b=\lim _\limits{n \rightarrow \infty} \frac{1^2+2^2+3^2+\ldots+n^2}{n^3}$$, then

A
a = b
B
2a = 3b
C
a = 2b
D
3a = 2b
4
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x) = {{{4^{x - \pi }} + {4^{x - \pi }} - 2} \over {{{(x - \pi )}^2}}}$$, for $$x \ne \pi$$, is continuous at $$x=\pi$$, then k =

A
$$2\log2$$
B
$$(\log2)^2$$
C
$$-(\log2)^2$$
D
$$8(\log2)^2$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12