1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=\frac{|x|}{x}$$, for $$x \neq 0$$ $$=1$$, for $$x=0$$, then tre function is

A
differentiable but not continuous at $$x=0$$
B
continuous and differentiable at $$x=0$$
C
neither continuous nor differentiable at $$x=0$$
D
continuous but not differentiable at $$x=0$$
2
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $$f(x)=\frac{x+1}{9 x+x^3}$$ is

A
discontinuous at exactly two points
B
discontinuous at exactly one point
C
continuous for all real values of $$x$$
D
discontinuous at exactly three points
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The points of discontinuity of the function

$$\begin{aligned} f(x) & =\frac{1}{x-1}, \text { if } 0 \leq x \leq 2 \\ & =\frac{x+5}{x+3} \text { if } 2< x \leq 4 \end{aligned}$$

in its domain are

A
$$x=1, x=2$$
B
$$x=0, x=2$$
C
$$x=2$$ only
D
$$x=4$$ only
4
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)$ is continuous at $x=3$, where

$$\begin{aligned} f(x) & =a x+1, & \text { for } x \leq 3 \\ & =b x+3 & , \text { for } x>3 \text { then } \end{aligned}$$

A
$a+b=\frac{-2}{3}$
B
$a-b=\frac{-2}{3}$
C
$a-b=\frac{2}{3}$
D
$a+b=\frac{2}{3}$
MHT CET Subjects
EXAM MAP