1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=x\left[\frac{x}{2}\right]$, for $-10< x<10$, where $[t]$ denotes the greatest integer function. Then the number of points of discontinuity of $f$ is equal to

A
10
B
9
C
6
D
8
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\lim\limits_{x \rightarrow \infty}\left(\frac{x^2+x+1}{x+1}-a x-b\right)=4$ then

A
$\mathrm{a}=1, \mathrm{~b}=4$
B
$\mathrm{a}=1, \mathrm{~b}=-4$
C
$\mathrm{a}=2, \mathrm{~b}=-3$
D
$\mathrm{a}=2, \mathrm{~b}=3$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let k be a non-zero real number. If $f(x)=\left\{\begin{array}{cl}\frac{\left(\mathrm{e}^x-1\right)^2}{\sin \left(\frac{x}{k}\right) \log \left(1+\frac{x}{4}\right)} & , x \neq 0 \\ 12 & , x=0\end{array}\right.$ is a continuous function, then the value of $k$ is

A
1
B
2
C
4
D
3
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{x+x^2+x^3+\ldots \ldots \ldots \ldots+x^{\mathrm{n}}-\mathrm{n}}{x-1}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)=$

A
$\frac{\mathrm{n}(\mathrm{n}+1)(4 \mathrm{n}-1)}{6}$
B
$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
C
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
D
$\frac{\mathrm{n}(2 \mathrm{n}+1)}{4}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12