1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of k , for which the function

$$\mathrm{f}(x)= \begin{cases}\left(\frac{4}{5}\right)^{\frac{\ln 4 x}{\tan 5 x}}, & 0< x< \frac{\pi}{2} \\ \mathrm{k}+\frac{2}{5} & , x=\frac{\pi}{2}\end{cases}$$

is continuous at $x=\frac{\pi}{2}$, is

A
$\frac{17}{20}$
B
$\frac{3}{5}$
C
$-\frac{2}{5}$
D
$\frac{2}{5}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\lim _\limits{x \rightarrow 0} \frac{\sin \left(\pi \cos ^2 x\right)}{x^2}$ is equal to

A
1
B
$-\pi$
C
$\pi$
D
$\frac{\pi}{2}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\lim _\limits{x \rightarrow 0} \frac{x}{|x|+x^2}$ is

A
1
B
$-1$
C
0
D
does not exist
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{1+\cos \pi x}{\pi(1-x)^2}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)$ is equal to

A
$\frac{\pi}{2}$
B
$\frac{2}{\pi}$
C
$\frac{\pi^2}{4}$
D
$\frac{4}{\pi^2}$
MHT CET Subjects
EXAM MAP