Trigonometric Ratios & Identities · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

The value of $\cos 20^{\circ}+2 \sin ^2 55^{\circ}-\sqrt{2} \sin 65^{\circ}$ is

MHT CET 2024 16th May Evening Shift
2

The maximum value of $\left(\cos \alpha_1\right) \cdot\left(\cos \alpha_2\right) \ldots .\left(\cos \alpha_n\right)$ under the constraints $0 \leq \alpha_1, \alpha_2, \ldots ., \alpha_n \leq \frac{\pi}{2}$ and $\left(\cot \alpha_1\right) \cdot\left(\cot \alpha_2\right) \ldots\left(\cot \alpha_n\right)=1$ is

MHT CET 2024 16th May Morning Shift
3

If $\mathrm{A}+\mathrm{B}=225^{\circ}$, then $\frac{\cot \mathrm{A}}{1+\cot \mathrm{A}} \cdot \frac{\cot \mathrm{B}}{1+\cot \mathrm{B}}$, if it exists, is equal to

MHT CET 2024 15th May Evening Shift
4

The value of $\begin{aligned} \cos \left(18^{\circ}-\mathrm{A}\right) \cos \left(18^{\circ}+\mathrm{A}\right) -\cos \left(72^{\circ}-\mathrm{A}\right) \cos \left(72^{\circ}+\mathrm{A}\right) \text { is equal to }\end{aligned}$

MHT CET 2024 15th May Morning Shift
5

$$ \cos ^3\left(\frac{\pi}{8}\right) \cos \left(\frac{3 \pi}{8}\right)+\sin ^3\left(\frac{\pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right)=$$

MHT CET 2024 11th May Morning Shift
6

If $\alpha+\beta=\frac{\pi}{2}$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ equals

MHT CET 2024 9th May Morning Shift
7

If $\mathrm{A}>\mathrm{B}$ and $\tan \mathrm{A}-\tan \mathrm{B}=x$ and $\cot \mathrm{B}-\cot \mathrm{A}=y$, then $\cot (\mathrm{A}-\mathrm{B})=$

MHT CET 2024 4th May Evening Shift
8

The value of the expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to

MHT CET 2024 4th May Morning Shift
9

If $\sin (\theta-\alpha), \sin \theta$ and $\sin (\theta+\alpha)$ are in H.P., then the value of $\cos ^2 \theta$ is

MHT CET 2024 3rd May Evening Shift
10

Let $\alpha$ and $\beta$ be two real roots of the equation $(k+1) \tan ^2 x-\sqrt{2} \lambda \tan x=(1-k)$ where $k(\neq-1)$ and $\lambda$ are real numbers. If $\tan ^2(\alpha+\beta)=50$, then a value of $\lambda$ is

MHT CET 2024 3rd May Evening Shift
11

If $\tan x=\frac{3}{4}$ and $\pi< x< \frac{3 \pi}{2}$, then $\cos \frac{x}{2}=$ ___________

MHT CET 2024 3rd May Morning Shift
12

The approximate value of $\cos \left(30^{\circ}, 30^{\prime}\right)$ is given that $1^{\circ}=0.0175^{\circ}$ and $\cos 30^{\circ}=0.8660$

MHT CET 2024 3rd May Morning Shift
13

If $\alpha+\beta+\gamma=\pi$, then the expression $\sin ^2 \alpha+\sin ^2 \beta-\sin ^2 \gamma$ has the value

MHT CET 2024 2nd May Evening Shift
14

If $$\mathrm{a} \cos 2 \theta+\mathrm{b} \sin 2 \theta=\mathrm{c}$$ has $$\alpha$$ and $$\beta$$ as its roots, then the value of $$\tan \alpha+\tan \beta$$ is

MHT CET 2023 14th May Evening Shift
15

If $$\sin (\theta-\alpha), \sin \theta$$ and $$\sin (\theta+\alpha)$$ are in H.P., then the value of $$\cos 2 \theta$$ is

MHT CET 2023 14th May Morning Shift
16

The value of $$\begin{aligned} \cos \left(18^{\circ}-\mathrm{A}\right) \cdot \cos ( & \left.18^{\circ}+\mathrm{A}\right) \\ & -\cos \left(72^{\circ}-\mathrm{A}\right) \cos \left(72^{\circ}+\mathrm{A}\right) \text { is }\end{aligned}$$

MHT CET 2023 13th May Morning Shift
17

$$\cos ^2 48^{\circ}-\sin ^2 12^{\circ}=$$ _________, if $$\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$$

MHT CET 2023 12th May Evening Shift
18

If $$\tan \theta=\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}, 0 \leq \alpha \leq \frac{\pi}{2}$$, then the value of $$\cos 2 \theta$$ is

MHT CET 2023 12th May Morning Shift
19

The value of $$\tan \left(\frac{\pi}{8}\right)$$ is _________.

MHT CET 2023 11th May Morning Shift
20

The value of $$\tan \frac{\pi}{8}$$ is

MHT CET 2023 10th May Morning Shift
21

If $$\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}$$. Then $$\tan A, \tan B, \tan C$$ are in

MHT CET 2023 9th May Evening Shift
22

If $$\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$$, then $$\cos ^2 48^{\circ}-\sin ^2 12^{\circ}$$ has the value

MHT CET 2023 9th May Morning Shift
23

If $$\cot (A+B)=0$$, then $$\sin (A+2 B)$$ is equal to

MHT CET 2022 11th August Evening Shift
24

$$\tan \mathrm{A}+2 \tan 2 \mathrm{~A}+4 \tan 4 \mathrm{~A}+8 \cot 8 \mathrm{~A}=$$

MHT CET 2021 24th September Evening Shift
25

If $$a \sin \theta=b \cos \theta$$, where $$a, b \neq 0$$, then $$a\cos 2 \theta+b \sin 2 \theta=$$

MHT CET 2021 24th September Morning Shift
26

If $$\sin (y+z-x), \sin (z+x-y)$$ and $$\sin (x+y-z)$$ are in AP, then

MHT CET 2021 23rd September Evening Shift
27

If $$2 \cos \theta=x+\frac{1}{x}$$, then $$2 \cos 3 \theta=$$

MHT CET 2021 22th September Evening Shift
28

$$\tan 3 \mathrm{~A} \cdot \tan 2 \mathrm{~A} \cdot \tan \mathrm{A}=$$

MHT CET 2021 22th September Morning Shift
29

If $$\frac{\cos (A+B)}{\cos (A-B)}=\frac{\sin (C+D)}{\sin (C-D)}$$, then $$\tan A \tan B \tan C=$$

MHT CET 2021 21th September Morning Shift
30

If $$\cos x=\frac{24}{25}$$ and $$x$$ lięs in first quadrant, then $$\sin \frac{x}{2}+\cos \frac{x}{2}=$$

MHT CET 2021 20th September Evening Shift
31

The value of $$\sin 18^{\circ}$$ is

MHT CET 2021 20th September Morning Shift
32

$$\frac{1-\sin \theta+\cos \theta}{1-\sin \theta-\cos \theta}=$$

MHT CET 2020 19th October Evening Shift
33

If $A$ and $B$ are supplementary angles, then $\sin ^2 \frac{A}{2}+\sin ^2 \frac{B}{2}=$

MHT CET 2020 19th October Evening Shift
34

$$\begin{aligned} & \cos \left(36^{\circ}-A\right) \cos \left(36^{\circ}+A\right)+\cos \left(54^{\circ}+A\right) \cos \\ & \left(54^{\circ}-A\right)= \end{aligned}$$

MHT CET 2020 16th October Evening Shift
35

If $$x+y=\frac{\pi}{2}$$, then the maximum value of $$\sin x \cdot \sin y$$ is

MHT CET 2020 16th October Evening Shift
36

If $$a=\sin 175^{\circ}+\cos 175^{\circ}$$, then

MHT CET 2020 16th October Evening Shift
37

The polar co-ordinates of the point whose cartesian co-ordinates are $$(-2,-2)$$, are given by

MHT CET 2020 16th October Morning Shift
38

If $$x \cos \theta+y \sin \theta=5, x \sin \theta-y \cos \theta=3$$, then the value of $$x^2+y^2=$$

MHT CET 2020 16th October Morning Shift
39

If $$\sin \theta=-\frac{12}{13}, \cos \phi=-\frac{4}{5}$$ and $$\theta, \phi$$ lie in the third quadrant, then $$\tan (\theta-\phi)=$$

MHT CET 2020 16th October Morning Shift
40

$$\frac{1-2\left[\cos 60^{\circ}-\cos 80^{\circ}\right]}{2 \sin 10^{\circ}}=\ldots \ldots$$

MHT CET 2019 3rd May Morning Shift
41

The value of $\sin 18^{\circ}$ is $\qquad$

MHT CET 2019 2nd May Evening Shift
42

If $\theta=\frac{17 \pi}{3}$ then, $\tan \theta-\cot \theta=\ldots$

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12