Inverse Trigonometric Functions · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

If $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \cos ^{-1} x$, then $x$ is

MHT CET 2024 16th May Evening Shift
2

If $\cos ^{-1}\left(\frac{12}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1} \mathrm{P}$, then the value of $P$ is

MHT CET 2024 16th May Evening Shift
3

If $y=\tan ^{-1}\left(\frac{2+3 x}{3-2 x}\right)+\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)$, then $\frac{d y}{d x}=$

MHT CET 2024 16th May Evening Shift
4

The domain of the function $\mathrm{f}(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^2}}$ is

MHT CET 2024 16th May Evening Shift
5

If $\tan ^{-1}\left(\frac{x+1}{x-1}\right)+\tan ^{-1}\left(\frac{x-1}{x}\right)=\tan ^{-1}(-7)$, then $x$ is equal to

MHT CET 2024 16th May Evening Shift
6

The value of $\tan ^{-1}(-\sqrt{3})-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\cos ^{-1}\left(\frac{-1}{2}\right)$ is

MHT CET 2024 16th May Evening Shift
7

If $\sin ^{-1}\left(\frac{x}{5}\right)+\operatorname{cosec}^{-1}\left(\frac{5}{4}\right)=\frac{\pi}{2}$, then the value of $x$ is

MHT CET 2024 16th May Morning Shift
8

Let the function $g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(u)=2 \tan ^{-1}\left(e^u\right)-\frac{\pi}{2}$. Then $g$ is

MHT CET 2024 16th May Morning Shift
9

If $\sin ^{-1}\left(\frac{x}{13}\right)+\operatorname{cosec}^{-1}\left(\frac{13}{12}\right)=\frac{\pi}{2}$, then the value of

MHT CET 2024 15th May Evening Shift
10

If $\cos ^{-1} x=\alpha(0

MHT CET 2024 15th May Evening Shift
11

If $\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x$, then the value of $\sin x$ is

MHT CET 2024 15th May Evening Shift
12

If $0< x<1$, then $\sqrt{1+x^2}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^2-1\right]^{\frac{1}{2}}$ is equal to

MHT CET 2024 15th May Evening Shift
13

$2 \pi-\left(\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}\right)$ is equal to

MHT CET 2024 15th May Morning Shift
14

The value of $\sin \left(\cos ^{-1}\left(-\frac{1}{3}\right)-\sin ^{-1}\left(\frac{1}{3}\right)\right)$ is

MHT CET 2024 11th May Evening Shift
15

If $y=\sin ^{-1}\left(\frac{\log x^2}{1+(\log x)^2}\right)$, then $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{\mathrm{at ~} x=1}=$

MHT CET 2024 11th May Morning Shift
16

The value of $\tan ^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}+\frac{1}{2} \cos ^{-1} x$ is

MHT CET 2024 11th May Morning Shift
17

$$\cos \left[\sin ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)\right]=$$

MHT CET 2024 11th May Morning Shift
18

$\tan \left(\cos ^{-1} \frac{1}{\sqrt{2}}+\tan ^{-1} \frac{1}{2}\right)=$

MHT CET 2024 10th May Evening Shift
19

If $y=\sin ^2\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ has the value

MHT CET 2024 10th May Evening Shift
20

The value of $\cos \left(2 \cos ^{-1} x+\sin ^{-1} x\right)$ at $x=\frac{1}{5}$ is

MHT CET 2024 10th May Evening Shift
21

If $x, y, z$ are in Arithmetic Progression and $\tan ^{-1} x, \tan ^{-1} y, \tan ^{-1} z$ are also in Arithmetic progression, where $x, z>0$ and $x z<1, y<1$, then

MHT CET 2024 10th May Evening Shift
22

Derivative of $\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$ w.r.t. $\cos ^{-1}\left(4 x^3-3 x\right)$ is

MHT CET 2024 10th May Evening Shift
23

If $\tan ^{-1}(x+2)+\tan ^{-1}(x-2)-\tan ^{-1}\left(\frac{1}{2}\right)=0$, then one value of $x$ is

MHT CET 2024 10th May Evening Shift
24

The numerical value of $\tan \left(2 \tan ^{-1}\left(\frac{1}{5}\right)+\frac{\pi}{4}\right)$

MHT CET 2024 10th May Morning Shift
25

The value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ is

MHT CET 2024 10th May Morning Shift
26

If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$ and $x^2+y^2+z^2+k x y z=1$, then k is

MHT CET 2024 10th May Morning Shift
27

$2 \pi-\left(\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}\right)$ is equal to

MHT CET 2024 9th May Evening Shift
28

The value of $\cos ^{-1}\left\{\frac{1}{\sqrt{2}}\left(\cos \frac{9 \pi}{10}-\sin \frac{9 \pi}{10}\right)\right\}$ is

MHT CET 2024 9th May Morning Shift
29

Domain of definition of the real valued function $f(x)=\sqrt{\sin ^{-1}(2 x)+\frac{\pi}{6}}$ is

MHT CET 2024 9th May Morning Shift
30

$$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\cos ^{-1}\left(\frac{x-\frac{1}{x}}{x+\frac{1}{x}}\right)\right)=$$

MHT CET 2024 4th May Evening Shift
31

The approximate value of $\tan ^{-1}(0.999)$ is (use $\pi=3.1415$ )

MHT CET 2024 4th May Evening Shift
32

The value of $\frac{\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)}{\operatorname{cosec}^{-1}(-\sqrt{2})+\cos ^{-1}\left(\frac{-1}{2}\right)}$

MHT CET 2024 4th May Evening Shift
33

If $\cot ^{-1}(7)+\cot ^{-1}(8)+\cot ^{-1}(18)=\cot ^{-1} x$, then the value of $x$ is

MHT CET 2024 4th May Evening Shift
34

If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$, then the value of $x^2+y^2+z^2-2 x y z$ is

MHT CET 2024 4th May Evening Shift
35

If $\mathrm{f}(x)=\cos ^{-1} x, \mathrm{~g}(x)=\mathrm{e}^x$ and $\mathrm{h}(x)=\mathrm{g}(\mathrm{f}(x))$, then $\frac{\mathrm{h}^{\prime}(x)}{\mathrm{h}(x)}=$

MHT CET 2024 4th May Evening Shift
36

The value of $\cot \left(\operatorname{cosec}^{-1} \frac{5}{3}+\tan ^{-1} \frac{2}{3}\right)$ is

MHT CET 2024 4th May Morning Shift
37

If $\sin \left(\cot ^{-1}(x+1)\right)=\cos \left(\tan ^{-1} x\right)$ then considering positive square roots, $x$ has the value ___________

MHT CET 2024 4th May Morning Shift
38

Considering only the Principal values of inverse functions, the set

$$A=\left\{x \geq 0 \left\lvert\, \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right.\right\}$$

MHT CET 2024 4th May Morning Shift
39

If $0< x < 1$, then

$$\sqrt{1+x^2}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^2-1\right]^{\frac{1}{2}}=$$

MHT CET 2024 3rd May Evening Shift
40

If $y=\tan ^{-1}\left(\frac{3+2 x}{2-3 x}\right)+\tan ^{-1}\left(\frac{3 x}{1+4 x^2}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

MHT CET 2024 3rd May Evening Shift
41

The number of real solutions of $\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^2+x+1}=\frac{\pi}{2}$ is

MHT CET 2024 3rd May Morning Shift
42

$\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)\right)$ is

MHT CET 2024 2nd May Evening Shift
43

The value of $\tan \left(2 \tan ^{-1}\left(\frac{\sqrt{5}-1}{2}\right)\right)$ is

MHT CET 2024 2nd May Evening Shift
44

Let $f(\theta)=\sin \left(\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)\right)$, where $\frac{-\pi}{4}<\theta<\frac{\pi}{4}$, then the value of $\frac{d}{d(\tan \theta)}(f(\theta))$ is

MHT CET 2024 2nd May Evening Shift
45

The value of $\cos \left(2 \cos ^{-1} x+\sin ^{-1} x\right)$ at $x=\frac{1}{5}$ where $0 \leq \cos ^{-1} x \leq \pi$ and $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$, is

MHT CET 2024 2nd May Morning Shift
46

Considering only the principal values of inverse function, the set

$$A=\left\{x \geq 0 / \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right\}$$

MHT CET 2024 2nd May Morning Shift
47

The number of real solutions of

$\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^2+x+1}=\frac{\pi}{2}$ is

MHT CET 2024 2nd May Morning Shift
48

The value of $\sin \left(2 \cos ^{-1}\left(-\frac{3}{5}\right)\right)$ is

MHT CET 2024 2nd May Morning Shift
49

If $$\sum_\limits{r=1}^{50} \tan ^{-1} \frac{1}{2 r^2}=p$$ then $$\tan p$$ is

MHT CET 2023 14th May Evening Shift
50

If $$\cos ^{-1} x-\cos ^{-1} \frac{y}{3}=\alpha$$, where $$-1 \leq x \leq 1$, $-3 \leq y \leq 3, x \leq \frac{y}{3}$$, then for all $$x, y, 9 x^2-6 x y \cos \alpha+y^2$$ is equal to

MHT CET 2023 14th May Evening Shift
51

The value of $$\tan ^{-1}\left(\frac{1}{8}\right)+\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)$$ is

MHT CET 2023 14th May Evening Shift
52

Given $$0 \leq x \leq \frac{1}{2}$$, then the value of $$\tan \left(\sin ^{-1}\left(\frac{x}{\sqrt{2}}+\frac{\sqrt{1-x^2}}{\sqrt{2}}\right)-\sin ^{-1} x\right)$$ is

MHT CET 2023 14th May Evening Shift
53

If $$\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$$, then the value of $$x^{2025}+x^{2026}+x^{2027}$$ is

MHT CET 2023 14th May Morning Shift
54

The value of $$\tan \left(\sin ^{-1}\left(\frac{3}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right)$$ is

MHT CET 2023 13th May Evening Shift
55

If $$\left(\tan ^{-1} x\right)^2+\left(\cot ^{-1} x\right)^2=\frac{5 \pi^2}{8}$$, then the value of $$x$$ is

MHT CET 2023 13th May Evening Shift
56

The principal value of $$\sin ^{-1}(\sin (3 \pi / 4))$$ is

MHT CET 2023 13th May Evening Shift
57

$$x, y, z$$ are in G.P. and $$\tan ^{-1} x, \tan ^{-1} y, \tan ^{-1} z$$ are in A.P., then

MHT CET 2023 13th May Morning Shift
58

The value of $$x$$, for which $$\sin \left(\cot ^{-1}(x)\right)=\cos \left(\tan ^{-1}(1+x)\right)$$, is

MHT CET 2023 12th May Evening Shift
59

If $$\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x$$, then $$x$$ is

MHT CET 2023 12th May Evening Shift
60

If $$x=\operatorname{cosec}\left(\tan ^{-1}\left(\cos \left(\cot ^{-1}\left(\sec \left(\sin ^{-1} a\right)\right)\right)\right)\right), \mathrm{a} \in[0,1]$$

MHT CET 2023 12th May Morning Shift
61

The value of $$\sin \left(\cot ^{-1} x\right)$$ is

MHT CET 2023 12th May Morning Shift
62

If $$\cos ^{-1} \sqrt{\mathrm{p}}+\cos ^{-1} \sqrt{1-\mathrm{p}}+\cos ^{-1} \sqrt{1-\mathrm{q}}=\frac{3 \pi}{4}$$, then $$\mathrm{q}$$ is

MHT CET 2023 11th May Evening Shift
63

$$\pi+\left(\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}\right)$$ is equal to

MHT CET 2023 11th May Evening Shift
64

If $$\alpha=3 \sin ^{-1} \frac{6}{11}$$ and $$\beta=3 \cos ^{-1}\left(\frac{4}{9}\right)$$, where the inverse trigonometric functions take only the principal values, then the correct option is

MHT CET 2023 11th May Morning Shift
65

$$\text { The value of } \sec ^2\left(\tan ^{-1} 2\right)+\operatorname{cosec}^2\left(\cot ^{-1} 3\right) \text { is }$$

MHT CET 2023 11th May Morning Shift
66

The value of $$2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}$$

MHT CET 2023 11th May Morning Shift
67

$$\text { If } y=\sqrt{\frac{1-\sin ^{-1}(x)}{1+\sin ^{-1}(x)}} \text {, then } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { at } x=0 \text { and } y=1 \text { is }$$

MHT CET 2023 11th May Morning Shift
68

The domain of the function $$\mathrm{f}(x)=\sin ^{-1}\left(\frac{|x|+5}{x^2+1}\right)$$ is $$(-\infty,-a] \cup[a, \infty)$$. Then a is equal to

MHT CET 2023 10th May Evening Shift
69

The value of $$\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$$ is

MHT CET 2023 10th May Evening Shift
70

If $$\tan ^{-1} a+\tan ^{-1} b+\tan ^{-1} c=\pi$$, then which of the following statement is true?

MHT CET 2023 10th May Evening Shift
71

Considering only the principal values of an inverse function, the set

$$\mathrm{A}=\left\{x \geq 0 / \tan ^{-1} x+\tan ^{-1} 6 x=\frac{\pi}{4}\right\}$$

MHT CET 2023 10th May Morning Shift
72

The solution of the equation $$\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}$$ is

MHT CET 2023 10th May Morning Shift
73

The value of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right), |x| < \frac{1}{2}, x \neq 0$$

MHT CET 2023 9th May Evening Shift
74

If $$\sin ^{-1} x+\cos ^{-1} y=\frac{3 \pi}{10}$$, then the value of $$\cos ^{-1} x+\sin ^{-1} y$$ is

MHT CET 2023 9th May Morning Shift
75

The value of $$\cot \left(\sum_\limits{n=1}^{23} \cot ^{-1}\left(1+\sum_\limits{k=1}^n 2 k\right)\right)$$ is

MHT CET 2023 9th May Morning Shift
76

If $$\cos ^{-1} x-\cos ^{-1} \frac{y}{3}=\alpha$$, where $$-1 \leq x \leq 1, -3 \leq y \leq 3, x \leq \frac{y}{3}$$, then for all $$x, y$$ $$9 x^2-6 x y \cos \alpha+y^2$$ is equal to

MHT CET 2023 9th May Morning Shift
77

If $$\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x$$, then $$x$$ has the value

MHT CET 2022 11th August Evening Shift
78

The value of $$\sin \left(2 \sin ^{-1} 0.8\right)$$ is equal to

MHT CET 2022 11th August Evening Shift
79

The principal value of $$\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$$ is

MHT CET 2022 11th August Evening Shift
80

The value of $$\tan ^{-1} 2+\tan ^{-1} 3$$ is

MHT CET 2021 24th September Evening Shift
81

If $$y=\tan ^{-1}\left[\frac{\log \left(\frac{e}{x^2}\right)}{\log \left(e x^2\right)}\right]+\tan ^{-1}\left[\frac{3+2 \log x}{1-6 \log x}\right]$$, then $$\frac{d^2 y}{d x^2}=$$

MHT CET 2021 24th September Morning Shift
82

The value of $$\sin ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$$ is,

MHT CET 2021 24th September Morning Shift
83

If $$\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}$$, where $$x>0$$, then $$x=$$

MHT CET 2021 23rd September Evening Shift
84

$$\tan \left(\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right)=$$

MHT CET 2021 23th September Morning Shift
85

If $$\tan ^{-1}\left[\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right]=\alpha$$, then the value of $$\sin 2 \alpha$$ is

MHT CET 2021 23th September Morning Shift
86

If $$2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$$, then the value of $$x$$ is

MHT CET 2021 22th September Evening Shift
87

$$\tan ^{-1}\left(\tan \frac{5 \pi}{6}\right)+\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=$$

MHT CET 2021 22th September Morning Shift
88

$$y=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), 0 \leq x < \frac{\pi}{2}$$, then $$\frac{d y}{d x}$$ at $$x=\frac{\pi}{6}$$ is

MHT CET 2021 22th September Morning Shift
89

If $$y=\tan ^{-1}\left[\frac{1}{1+x+x^2}\right]+\tan ^{-1}\left[\frac{1}{x^2+3 x+3}\right], x>0$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 21th September Evening Shift
90

If $$\sin ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\sin ^{-1} \alpha$$, then $$\alpha=$$

MHT CET 2021 21th September Evening Shift
91

$$\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$$, then the values of $$x$$ are

MHT CET 2021 21th September Morning Shift
92

$$\sin ^{-1}\left[\sin \left(-600^{\circ}\right)\right]+\cot ^{-1}(-\sqrt{3})=$$

MHT CET 2021 20th September Evening Shift
93

$$\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=$$

MHT CET 2021 20th September Evening Shift
94

If $$4 \sin ^{-1} x+6 \cos ^{-1} x=3 \pi$$, where $$-1 \leq x \leq 1$$, then $$x=$$

MHT CET 2021 20th September Morning Shift
95

$$\left[\sin \left(\tan ^{-1} \frac{3}{4}\right)\right]^2+\left[\sin \left(\tan ^{-1} \frac{4}{3}\right)\right]^2=$$

MHT CET 2020 16th October Evening Shift
96

The value of $$\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{8}\right)$$ is

MHT CET 2020 16th October Evening Shift
97

The value of $$\sin ^{-1}\left(-\frac{1}{2}\right)+\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$ is

MHT CET 2020 16th October Morning Shift
98

If $y=\tan ^{-1}\left(\frac{1-\cos 3 x}{\sin 3 x}\right)$, then $\frac{d y}{d x}=$ .......

MHT CET 2019 3rd May Morning Shift
99

Derivative of $\sin ^{-1}\left(\frac{t}{\sqrt{1+t^2}}\right)$ with respect to $\cos ^{-1}\left(\frac{1}{\sqrt{1+t^2}}\right)$ is

MHT CET 2019 3rd May Morning Shift
100

$\sin \left[3 \sin ^{-1}(0.4)\right]=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
101

If $4 \sin ^{-1} x+6 \cos ^{-1} x=3 \pi$ then $x=$ ............

MHT CET 2019 2nd May Evening Shift
102

If $f(x)=\cos ^{-1}\left[\frac{1-(\log x)^2}{1+(\log x)^2}\right]$, then $f^{\prime}(e)=\ldots$

MHT CET 2019 2nd May Morning Shift
103

The value of $\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}$ is ...........

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12