If the function
$$ f(x)=\left\{\begin{array}{cc} x+a \sqrt{2} \sin x & \text { if } 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b & \text { if } \frac{\pi}{4} < x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x & \text { if } \frac{\pi}{2} < x \leq \pi \end{array}\right. $$
is continuous in $[0, \pi]$ then $a-b=$
$$ \lim\limits_{x \rightarrow \infty}\left(\frac{x+8}{x+1}\right)^{x+5}=\ldots $$
If $f(x)= \begin{cases}\frac{8^x-4^x-2^x+1^x}{x^2}, & \text { if } x>0 \\ \mathrm{e}^x \sin x+\mathrm{i} x+\lambda \log 4, & \text { if } x \leqslant 0, \mathrm{i} \in \mathbb{R}\end{cases}$ continuous at $x=0$, then the value of $500 \mathrm{e}^\lambda$ is
$$ \mathop {\lim }\limits_{n \to \infty }\left[\frac{1}{1-n^4}+\frac{8}{1-n^4}+\ldots \ldots \ldots \ldots .+\frac{n^3}{1-n^4}\right]= $$