1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If a discrete random variable X is defined as follows

$\mathrm{P}[\mathrm{X}=x]=\left\{\begin{array}{cl}\frac{\mathrm{k}(x+1)}{5^x}, & \text { if } x=0,1,2 \ldots \ldots . \\ 0, & \text { otherwise }\end{array}\right.$

then $\mathrm{k}=$

A
$\frac{19}{25}$
B
$\frac{18}{25}$
C
$\frac{16}{25}$
D
$\frac{7}{25}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Numbers are selected at random, one at a time from two digit numbers $10,11,12 \ldots ., 99$ with replacement. An event $E$ occurs if and only if the product of the two digits of a selected number is 18 . If four numbers are selected, then probability that the event E occurs at least 3 times is

A
$\frac{87}{90^4}$
B
$\frac{348}{90^4}$
C
$87\left(\frac{4}{90}\right)^4$
D
$\left(\frac{4}{10}\right)^4$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two friends A and B apply for a job in the same company. The probabilities of A getting selected is $\frac{2}{5}$ and that of B is $\frac{4}{7}$. Then the probability, that one of them is selected, is

A
$\frac{8}{35}$
B
$\frac{18}{35}$
C
$\frac{26}{35}$
D
$\frac{34}{35}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If a random variable X has the following probability distribution values

$\mathrm{X}$ 0 1 2 3 4 5 6 7
$\mathrm{P(X):}$ 0 $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{2k}$ $\mathrm{3k}$ $\mathrm{k^2}$ $\mathrm{2k^2}$ $\mathrm{7k^2+k}$

Then $P(X \geq 6)$ has the value

A
$\frac{19}{100}$
B
$\frac{81}{100}$
C
$\frac{9}{100}$
D
$\frac{91}{100}$
MHT CET Subjects
EXAM MAP