1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If Rolle's theorem holds for the function $x^3+\mathrm{a} x^2+\mathrm{b} x, 1 \leq x \leq 2$ at the point $\frac{4}{3}$, then the values of $a$ and $b$ are respectively

A
5,8
B
$-8,5$
C
$8,-5$
D
$-5,8$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{\sin \left(\pi \cos ^2 x\right)}{3 x^2}, x \neq 0$ is continuous at $x=0$ then $\mathrm{f}(0)=$

A
0
B
$\frac{\pi}{3}$
C
$\frac{-\pi}{3}$
D
$\frac{3}{\pi}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \lim\limits_{x \rightarrow 5} \frac{\sqrt{2-2 \cos \left(x^2-12 x+35\right)}}{(x-5)}=\ldots \ldots $$

A
$\frac{2}{-5}$
B
-2
C
$\frac{-1}{2}$
D
-5
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{A}=\mathop {\lim }\limits_{x \to {0^ + }}\left(1+\tan ^2 \sqrt{x}\right)^{\frac{1}{2 x}}$, then $\log _{\mathrm{e}} \mathrm{A}=$

A
2
B
1
C
$\frac{1}{2}$
D
$\frac{1}{4}$
MHT CET Subjects
EXAM MAP