Complex Numbers · Mathematics · MHT CET
MCQ (Single Correct Answer)
If $z_1=5-2 i$ and $z_2=3+i$, where $i=\sqrt{-1}$, then $\arg \left(\frac{z_1+z_2}{z_1-z_2}\right)$ is
Let $\mathrm{z}=x+\mathrm{i} y$ be a complex number, where $x$ and $y$ are integers and $i=\sqrt{-1}$. Then the area of the rectangle whose vertices are the roots of the equation $\overline{z z}^3+\overline{\mathrm{zz}}^3=350$ is
If the complex number $z=x+i y$, where $i=\sqrt{-1}$, satisfies the condition $|z+1|=1$, then $z$ lies on
Let $z$ be a complex number such that $|z|+z=2+i$, where $i=\sqrt{-1}$, then $|z|$ is equal to
Let $\omega=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}, \mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|$ is
Let $Z$ be a complex number such that $|Z|+Z=2+i$ (where $i=\sqrt{-1})$, then $|Z|$ is equal to
If $\mathrm{w}=\frac{-1+i \sqrt{3}}{2}$, where $\mathrm{i}=\sqrt{-1}$, then the value of $\left(3+w+3 w^2\right)^4$ is
If $Z=\frac{-2}{1+\sqrt{3} i}, i=\sqrt{-1}$, then the value of $\arg Z$ is
If $\left|\frac{\mathrm{z}}{1+\mathrm{i}}\right|=2$, where $\mathrm{z}=x+\mathrm{i} y, \mathrm{i}=\sqrt{-1}$ represents a circle, then centre ' $C$ ' and radius ' $r$ ' of the circle are
Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^3=\frac{x+\mathrm{i} y}{27}, \mathrm{i}=\sqrt{-1}$, where $x$ and $y$ are real numbers, then $(y-x)$ has the value
If $z^2+z+1=0$ then $\left(z^3+\frac{1}{z^3}\right)^2+\left(z^4+\frac{1}{z^4}\right)^2=$ where $z=w=$ complex cube root of unity
If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $\left.z \neq-1\right)$, then $\operatorname{Re}(w)$ is
If $\mathrm{P}(x, y)$ denotes $\mathrm{z}=x+\mathrm{i} y x, y \in \mathbb{R}$ and $\mathrm{i}=\sqrt{-1}$ in Argand's plane and $\left|\frac{z-1}{z+2 i}\right|=1$, then the locus of P is
If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+\mathrm{i})^2}{\mathrm{a}-\mathrm{i}}, \mathrm{i}=\sqrt{-1}$, has magnitude $\sqrt{\frac{2}{5}}$ then $\bar{z}$ is equal to
Let $$z \in C$$ with $$\operatorname{Im}(z)=10$$ and it satisfies $$\frac{2 z-n}{2 z+n}=2 i-1, i=\sqrt{-1}$$ for some natural number $$\mathrm{n}$$, then
If $$a>0$$ and $$z=\frac{(1+i)^2}{a-i}, i=\sqrt{-1}$$, has magnitude $$\frac{2}{\sqrt{5}}$$, then $$\bar{z}$$ is
If $$(3 x+2)-(5 y-3) i$$ and $$(6 x+3)+(2 y-4) i$$ are conjugates of each other, then the value of $$\frac{x-y}{x+y}$$ is (where $$\left.i=\sqrt{-1}, x, y \in R\right)$$
The value of $$\frac{\mathrm{i}^{248}+\mathrm{i}^{246}+\mathrm{i}^{244}+\mathrm{i}^{242}+\mathrm{i}^{240}}{\mathrm{i}^{249}+\mathrm{i}^{247}+\mathrm{i}^{245}+\mathrm{i}^{243}+\mathrm{i}^{241}}, (\mathrm{i}=\sqrt{-1})$$ is
If $$|z-2+i| \leq 2$$, then the difference between the greatest and least value of $$|z|$$ is ________, $$(\mathrm{i}=\sqrt{-1})$$
If $$a > 0$$ and $$z=\frac{(1+i)^2}{a+i},(i=\sqrt{-1})$$ has magnitude $$\frac{2}{\sqrt{5}}$$, then $$\bar{z}$$ is equal to
If $$x=\frac{5}{1-2 \mathrm{i}}, \mathrm{i}=\sqrt{-1}$$, then the value of $$x^3+x^2-x+22$$ is
If $$\mathrm{z}=x+\mathrm{i} y$$ and $$\mathrm{z}^{1 / 3}=\mathrm{p}+\mathrm{iq}$$, where $$x, y, \mathrm{p}, \mathrm{q} \in \mathrm{R}$$ and $$\mathrm{i}=\sqrt{-1}$$, then value of $$\left(\frac{x}{\mathrm{p}}+\frac{y}{\mathrm{q}}\right)$$ is
The argument of $$\frac{1+i \sqrt{3}}{\sqrt{3}+i}, i=\sqrt{-1}$$ is
If $$w=\frac{z}{z-\frac{1}{3} i}$$ and $$|w|=1, i=\sqrt{-1}$$, then $$z$$ lies on
If $$Z_1=2+i$$ and $$Z_2=3-4 i$$ and $$\frac{\overline{Z_1}}{\overline{Z_2}}=a+b i$$, then the value of $$-7 a+b$$ is (where $$i=\sqrt{-1}$$ and $$a, b \in R)$$
If $$Z_1=4 i^{40}-5 i^{35}+6 i^{17}+2, Z_2=-1+i$$, where $$i=\sqrt{-1}$$, then $$\left|Z_1+Z_2\right|=$$
Let $$z$$ be a complex number such that $$|z|+z=3+i, i=\sqrt{-1}$$, then $$|z|$$ is equal to
If $$\mathrm{\frac{3+2i}{1+i}=\frac{1}{2}(x+iy)}$$, then x $$-$$ y =
The sqaure roots of the complex number $$(-5-12 \mathrm{i})$$ are
If amplitude of $$(z-2-3 i)$$ is $$\frac{3 \pi}{4}$$, then locus of $$z$$ is (where $$z=x+i y$$)
If $$z=x+iy$$ satisfies the condition $$|z+1|=1$$, then $$z$$ lies on the
If $$\omega$$ is the complex cube root of unity, then $$\left(3+5 \omega+3 \omega^2\right)^2+\left(3+3 \omega+5 \omega^2\right)^2=$$
If $$x=1+2 i$$, then the value of $$x^3+7 x^2-x+16$$ is
If $$z(2-i)=(3+i)$$, then $$z^{38}=$$, ( where $$z=x+i y$$)
The complex number with argument $$\frac{5 \pi^{\mathrm{c}}}{6}$$ at a distance of 2 units from the origin is
If $$\omega$$ is complex cube root of unity and $$(1+\omega)^7=A+B\omega$$, then values of A and B are, respectively
The value of (1 + i)$$^5$$ (1 $$-$$ i)$$^7$$ is
If $\omega$ is a complex cube root of unity and $A=\left[\begin{array}{ccc}\omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & 1\end{array}\right]$ then $A^{-1}=\ldots$