Complex Numbers · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

If $z_1=5-2 i$ and $z_2=3+i$, where $i=\sqrt{-1}$, then $\arg \left(\frac{z_1+z_2}{z_1-z_2}\right)$ is

MHT CET 2024 16th May Evening Shift
2

Let $\mathrm{z}=x+\mathrm{i} y$ be a complex number, where $x$ and $y$ are integers and $i=\sqrt{-1}$. Then the area of the rectangle whose vertices are the roots of the equation $\overline{z z}^3+\overline{\mathrm{zz}}^3=350$ is

MHT CET 2024 16th May Morning Shift
3

If the complex number $z=x+i y$, where $i=\sqrt{-1}$, satisfies the condition $|z+1|=1$, then $z$ lies on

MHT CET 2024 15th May Evening Shift
4

Let $z$ be a complex number such that $|z|+z=2+i$, where $i=\sqrt{-1}$, then $|z|$ is equal to

MHT CET 2024 15th May Morning Shift
5

Let $\omega=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}, \mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|$ is

MHT CET 2024 11th May Evening Shift
6

Let $Z$ be a complex number such that $|Z|+Z=2+i$ (where $i=\sqrt{-1})$, then $|Z|$ is equal to

MHT CET 2024 11th May Morning Shift
7

If $\mathrm{w}=\frac{-1+i \sqrt{3}}{2}$, where $\mathrm{i}=\sqrt{-1}$, then the value of $\left(3+w+3 w^2\right)^4$ is

MHT CET 2024 10th May Morning Shift
8

If $Z=\frac{-2}{1+\sqrt{3} i}, i=\sqrt{-1}$, then the value of $\arg Z$ is

MHT CET 2024 9th May Morning Shift
9

If $\left|\frac{\mathrm{z}}{1+\mathrm{i}}\right|=2$, where $\mathrm{z}=x+\mathrm{i} y, \mathrm{i}=\sqrt{-1}$ represents a circle, then centre ' $C$ ' and radius ' $r$ ' of the circle are

MHT CET 2024 4th May Evening Shift
10

Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^3=\frac{x+\mathrm{i} y}{27}, \mathrm{i}=\sqrt{-1}$, where $x$ and $y$ are real numbers, then $(y-x)$ has the value

MHT CET 2024 4th May Morning Shift
11

If $z^2+z+1=0$ then $\left(z^3+\frac{1}{z^3}\right)^2+\left(z^4+\frac{1}{z^4}\right)^2=$ where $z=w=$ complex cube root of unity

MHT CET 2024 3rd May Evening Shift
12

If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $\left.z \neq-1\right)$, then $\operatorname{Re}(w)$ is

MHT CET 2024 3rd May Morning Shift
13

If $\mathrm{P}(x, y)$ denotes $\mathrm{z}=x+\mathrm{i} y x, y \in \mathbb{R}$ and $\mathrm{i}=\sqrt{-1}$ in Argand's plane and $\left|\frac{z-1}{z+2 i}\right|=1$, then the locus of P is

MHT CET 2024 2nd May Evening Shift
14

If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+\mathrm{i})^2}{\mathrm{a}-\mathrm{i}}, \mathrm{i}=\sqrt{-1}$, has magnitude $\sqrt{\frac{2}{5}}$ then $\bar{z}$ is equal to

MHT CET 2024 2nd May Morning Shift
15

Let $$z \in C$$ with $$\operatorname{Im}(z)=10$$ and it satisfies $$\frac{2 z-n}{2 z+n}=2 i-1, i=\sqrt{-1}$$ for some natural number $$\mathrm{n}$$, then

MHT CET 2023 14th May Evening Shift
16

If $$a>0$$ and $$z=\frac{(1+i)^2}{a-i}, i=\sqrt{-1}$$, has magnitude $$\frac{2}{\sqrt{5}}$$, then $$\bar{z}$$ is

MHT CET 2023 14th May Morning Shift
17

If $$(3 x+2)-(5 y-3) i$$ and $$(6 x+3)+(2 y-4) i$$ are conjugates of each other, then the value of $$\frac{x-y}{x+y}$$ is (where $$\left.i=\sqrt{-1}, x, y \in R\right)$$

MHT CET 2023 13th May Evening Shift
18

The value of $$\frac{\mathrm{i}^{248}+\mathrm{i}^{246}+\mathrm{i}^{244}+\mathrm{i}^{242}+\mathrm{i}^{240}}{\mathrm{i}^{249}+\mathrm{i}^{247}+\mathrm{i}^{245}+\mathrm{i}^{243}+\mathrm{i}^{241}}, (\mathrm{i}=\sqrt{-1})$$ is

MHT CET 2023 13th May Morning Shift
19

If $$|z-2+i| \leq 2$$, then the difference between the greatest and least value of $$|z|$$ is ________, $$(\mathrm{i}=\sqrt{-1})$$

MHT CET 2023 12th May Evening Shift
20

If $$a > 0$$ and $$z=\frac{(1+i)^2}{a+i},(i=\sqrt{-1})$$ has magnitude $$\frac{2}{\sqrt{5}}$$, then $$\bar{z}$$ is equal to

MHT CET 2023 12th May Morning Shift
21

If $$x=\frac{5}{1-2 \mathrm{i}}, \mathrm{i}=\sqrt{-1}$$, then the value of $$x^3+x^2-x+22$$ is

MHT CET 2023 11th May Evening Shift
22

If $$\mathrm{z}=x+\mathrm{i} y$$ and $$\mathrm{z}^{1 / 3}=\mathrm{p}+\mathrm{iq}$$, where $$x, y, \mathrm{p}, \mathrm{q} \in \mathrm{R}$$ and $$\mathrm{i}=\sqrt{-1}$$, then value of $$\left(\frac{x}{\mathrm{p}}+\frac{y}{\mathrm{q}}\right)$$ is

MHT CET 2023 11th May Morning Shift
23

The argument of $$\frac{1+i \sqrt{3}}{\sqrt{3}+i}, i=\sqrt{-1}$$ is

MHT CET 2023 10th May Evening Shift
24

If $$w=\frac{z}{z-\frac{1}{3} i}$$ and $$|w|=1, i=\sqrt{-1}$$, then $$z$$ lies on

MHT CET 2023 10th May Morning Shift
25

If $$Z_1=2+i$$ and $$Z_2=3-4 i$$ and $$\frac{\overline{Z_1}}{\overline{Z_2}}=a+b i$$, then the value of $$-7 a+b$$ is (where $$i=\sqrt{-1}$$ and $$a, b \in R)$$

MHT CET 2023 9th May Evening Shift
26

If $$Z_1=4 i^{40}-5 i^{35}+6 i^{17}+2, Z_2=-1+i$$, where $$i=\sqrt{-1}$$, then $$\left|Z_1+Z_2\right|=$$

MHT CET 2023 9th May Morning Shift
27

Let $$z$$ be a complex number such that $$|z|+z=3+i, i=\sqrt{-1}$$, then $$|z|$$ is equal to

MHT CET 2022 11th August Evening Shift
28

If $$\mathrm{\frac{3+2i}{1+i}=\frac{1}{2}(x+iy)}$$, then x $$-$$ y =

MHT CET 2021 24th September Evening Shift
29

The sqaure roots of the complex number $$(-5-12 \mathrm{i})$$ are

MHT CET 2021 24th September Morning Shift
30

If amplitude of $$(z-2-3 i)$$ is $$\frac{3 \pi}{4}$$, then locus of $$z$$ is (where $$z=x+i y$$)

MHT CET 2021 23rd September Evening Shift
31

If $$z=x+iy$$ satisfies the condition $$|z+1|=1$$, then $$z$$ lies on the

MHT CET 2021 23th September Morning Shift
32

If $$\omega$$ is the complex cube root of unity, then $$\left(3+5 \omega+3 \omega^2\right)^2+\left(3+3 \omega+5 \omega^2\right)^2=$$

MHT CET 2021 22th September Evening Shift
33

If $$x=1+2 i$$, then the value of $$x^3+7 x^2-x+16$$ is

MHT CET 2021 22th September Morning Shift
34

If $$z(2-i)=(3+i)$$, then $$z^{38}=$$, ( where $$z=x+i y$$)

MHT CET 2021 21th September Evening Shift
35

The complex number with argument $$\frac{5 \pi^{\mathrm{c}}}{6}$$ at a distance of 2 units from the origin is

MHT CET 2021 21th September Morning Shift
36

If $$\omega$$ is complex cube root of unity and $$(1+\omega)^7=A+B\omega$$, then values of A and B are, respectively

MHT CET 2021 20th September Evening Shift
37

The value of (1 + i)$$^5$$ (1 $$-$$ i)$$^7$$ is

MHT CET 2021 20th September Morning Shift
38

If $\omega$ is a complex cube root of unity and $A=\left[\begin{array}{ccc}\omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & 1\end{array}\right]$ then $A^{-1}=\ldots$

MHT CET 2019 3rd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12