MCQ (Single Correct Answer)
If $$x=\frac{5}{1-2 \mathrm{i}}, \mathrm{i}=\sqrt{-1}$$, then the value of $$x^3+x^2-x+22$$ is
If $$\mathrm{z}=x+\mathrm{i} y$$ and $$\mathrm{z}^{1 / 3}=\mathrm{p}+\mathrm{iq}$$, where $$x, y, \mathrm{p}, \mathrm{q} \in \mathrm{R}$$ and $$\mathr...
The argument of $$\frac{1+i \sqrt{3}}{\sqrt{3}+i}, i=\sqrt{-1}$$ is
If $$w=\frac{z}{z-\frac{1}{3} i}$$ and $$|w|=1, i=\sqrt{-1}$$, then $$z$$ lies on
If $$Z_1=2+i$$ and $$Z_2=3-4 i$$ and $$\frac{\overline{Z_1}}{Z_2}=a+b i$$, then the value of $$-7 a+b$$ is (where $$i=\sqrt{-1}$$ and $$a, b \in R)$$...
If $$Z_1=4 i^{40}-5 i^{35}+6 i^{17}+2, Z_2=-1+i$$, where $$i=\sqrt{-1}$$, then $$\left|Z_1+Z_2\right|=$$
If $$z(2-i)=(3+i)$$, then $$z^{38}=$$, ( where $$z=x+i y$$)
The complex number with argument $$\frac{5 \pi^{\mathrm{c}}}{6}$$ at a distance of 2 units from the origin is
If $$\omega$$ is complex cube root of unity and $$(1+\omega)^7=A+B\omega$$, then values of A and B are, respectively
The value of (1 + i)$$^5$$ (1 $$-$$ i)$$^7$$ is