1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ f(x)= \begin{cases}{\left[x^2\right]-\left[-x^2\right],} & x \neq 3 \\ k & , x=3\end{cases} $$

is continuous at $x=3$, then $\mathrm{k}=$ where $[\cdot]$ is greatest integer function

A
0
B
1
C
-1
D
Does not exist
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\mathop {\lim }\limits_{x \to 0} \frac{\left(7^x-1\right)^4}{\tan \left(\frac{x}{\mathrm{k}}\right) \cdot \log \left(1+\frac{x^2}{3}\right) \cdot \sin 4 x}=3(\log 7)^3$, then $\mathrm{k}=$

A
$\quad 4(\log 7)^{-1}$
B
$\frac{1}{4}(\log 7)^{-1}$
C
$\quad 4 \log \left(\frac{1}{7}\right)$
D
$\frac{1}{4} \log 7$
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\left\{\begin{array}{ll}\operatorname{m} x+1, & x \leqslant \frac{\pi}{2} \\ \sin x+\mathrm{n}, & x>\frac{\pi}{2}\end{array}\right.$, is continuous at $x=\frac{\pi}{2},(\mathrm{~m}, \mathrm{n} \in \mathbb{Z})$ then

A
$\mathrm{m}=1, \mathrm{n}=0$
B
$\mathrm{m}=\frac{\mathrm{n} \pi}{2}$
C
$\mathrm{m}=\mathrm{n}=\frac{\pi}{2}$
D
$\mathrm{n}=\frac{\mathrm{m} \pi}{2}$
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 0} \frac{\mathrm{e}^{\tan x}-\mathrm{e}^x}{\tan x-x}= $$

A
1
B
0
C
$\frac{1}{2}$
D
$\frac{1}{4}$
MHT CET Subjects
EXAM MAP