1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as

$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$

where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at

A
only two points
B
only three points
C
four or more points
D
only one point
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^3}$$ is

A
0
B
$\frac{1}{32}$
C
$\frac{1}{8}$
D
$\frac{1}{16}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\lim _\limits{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^2}$ is

A
2
B
$-$2
C
$\frac{1}{2}$
D
$-\frac{1}{2}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , x<0 \\ a & , x=0 \\ \frac{\sqrt{2}}{\sqrt{16+\sqrt{x-4}}} & , x>0\end{array}\right.$ If $\mathrm{f}(x)$ is continuous at $x=0$, then the value of $a$ is

A
8
B
4
C
$\frac{1}{2}$
D
2
MHT CET Subjects
EXAM MAP