Definite Integration · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

If $[x]$ denotes the greatest integer function, then $$\int_\limits0^5 x^2[x] d x=$$

MHT CET 2024 16th May Evening Shift
2

The value of $\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin ^2 x}{1+2^x} d x$ is

MHT CET 2024 16th May Morning Shift
3

$$\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=$$

MHT CET 2024 15th May Evening Shift
4

The value of the integral $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} \mathrm{dx}$ is

MHT CET 2024 15th May Evening Shift
5

$$\int_0^{\frac{\pi}{4}} \frac{\sec ^2 x}{(1+\tan x)(2+\tan x)} d x=$$

MHT CET 2024 15th May Evening Shift
6

After $t$ seconds, the acceleration of a particle, which starts from rest and moves in a straight line is $\left(8-\frac{\mathrm{t}}{5}\right) \mathrm{cm} / \mathrm{s}^2$, then velocity of the particle at the instant, when the acceleration is zero, is

MHT CET 2024 15th May Evening Shift
7

The value of integral $\int_\limits{-2}^0\left(x^3+3 x^2+3 x+5+(x+1) \cos (x+1)\right) d x$ is equal to

MHT CET 2024 15th May Morning Shift
8

If $\mathrm{I}=\int_0^{\frac{\pi}{4}} \log (1+\tan x) \mathrm{d} x$, then value of $\mathrm{I}$ is

MHT CET 2024 11th May Evening Shift
9

$$\int_\limits{0.2}^{3.5}[x] \mathrm{d} x=$$ (where $[x]=$ greatest integer not greater than $x$ )

MHT CET 2024 11th May Morning Shift
10

$$\int_\limits0^{\frac{\pi}{4}} \log \left(\frac{\sin x+\cos x}{\cos x}\right) d x=$$

MHT CET 2024 10th May Evening Shift
11

$$\int_\limits0^a \frac{x-a}{x+a} d x=$$

MHT CET 2024 10th May Evening Shift
12

$\int_\limits{\frac{-\pi}{4}}^{\frac{\pi}{4}}(\sin x)^{-4} \mathrm{~d} x$ has the value

MHT CET 2024 10th May Evening Shift
13

$\int_\limits0^{\frac{\pi}{2}}|\sin x-\cos x| d x$ has the value

MHT CET 2024 10th May Morning Shift
14

The integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{d x}{\sin 2 x\left(\tan ^5 x+\cot ^5 x\right)}$ is equal to

MHT CET 2024 9th May Evening Shift
15

The value of $\mathrm{I}=\mathrm{I}=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1+\mathrm{e}^{-x}} \mathrm{~d} x$ is equal to

MHT CET 2024 9th May Morning Shift
16

The value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\sin 2 x\left(\tan ^5 x+\cot ^5 x\right)} d x$ is

MHT CET 2024 4th May Evening Shift
17

The integral $\int_{\frac{-1}{2}}^{\frac{1}{2}}\left([x]+\log _{\mathrm{e}}\left(\frac{1+x}{1-x}\right)\right) \mathrm{d} x$, where $[x]$ represent greatest integer function, equals

MHT CET 2024 4th May Morning Shift
18

The value of the integral $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^2+\log \frac{\pi-x}{\pi+x}\right) \cos x d x$ is equal to

MHT CET 2024 3rd May Evening Shift
19

If $\int_\limits0^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2 k \sec \theta}} d \theta=1-\frac{1}{\sqrt{2}},(k>0)$, then the value of $k$ is

MHT CET 2024 3rd May Morning Shift
20

The value of $\mathrm{I}=\int_\limits{\sqrt{\log _{\mathrm{e}}}}^{\sqrt{\log _{\mathrm{e}} 3}} \frac{x \sin x^2}{\sin x^2+\sin \left(\log _{\mathrm{e}} 6-x^2\right)} d x$ is

MHT CET 2024 2nd May Evening Shift
21

Let $f$ and $g$ be continuous functions on $[0, a]$ such that $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$, then $\int_0^a f(x) g(x) d x$ is equal to

MHT CET 2024 2nd May Morning Shift
22

If $$I_n=\int_\limits0^{\frac{\pi}{4}} \tan ^n \theta d \theta$$, then $$I_{12}+I_{10}=$$

MHT CET 2023 14th May Evening Shift
23

The integral $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{\frac{2}{3}} x \operatorname{cosec}^{\frac{4}{3}} x d x$$ is equal to

MHT CET 2023 14th May Morning Shift
24

The integral $$\int_\limits{\pi / 6}^{\pi / 3} \sec ^{\frac{2}{3}} x \operatorname{cosec}^{\frac{4}{3}} x d x$$ is equal to

MHT CET 2023 13th May Evening Shift
25

If $$\mathrm{f}(x)=\left\{\begin{array}{ll}\mathrm{e}^{\cos x} \sin x & , \text { for }|x| \leq 2 \\ 2, & \text { otherwise }\end{array}\right.$$, then $$\int_\limits{-2}^3 \mathrm{f}(x) \mathrm{d} x$$ is equal to

MHT CET 2023 13th May Morning Shift
26

The value of $$\int_\limits0^\pi\left|\sin x-\frac{2 x}{\pi}\right| \mathrm{d} x$$ is

MHT CET 2023 12th May Evening Shift
27

$$\int_\limits0^4|2 x-5| d x=$$

MHT CET 2023 12th May Morning Shift
28

Let $$f:[-1,2] \rightarrow[0, \infty)$$ be a continuous function such that $$\mathrm{f}(x)=\mathrm{f}(1-x), \forall x \in[-1,2]$$

Let $$\mathrm{R}_1=\int_{-1}^2 x \mathrm{f}(x) \mathrm{d} x$$ and $$\mathrm{R}_2$$ be the area of the region bounded by $$y=\mathrm{f}(x), x=-1, x=2$$ and the $$\mathrm{X}$$-axis, then $$\mathrm{R}_2$$ is

MHT CET 2023 11th May Evening Shift
29

$$\int\limits_0^\pi \frac{d x}{4+3 \cos x}=$$

MHT CET 2023 11th May Morning Shift
30

Let $$\mathrm{f}(x)=\int \frac{\sqrt{x}}{(1+x)^2} \mathrm{~d} x, x \geq 0$$, then $$\mathrm{f}(3)-\mathrm{f}(1)$$ is equal to

MHT CET 2023 11th May Morning Shift
31

Let $$\mathrm{f}(x)$$ be positive for all real $$x$$. If $$\mathrm{I}_1=\int_\limits{1-\mathrm{h}}^{\mathrm{h}} x \mathrm{f}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{1-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(x(1-x)) \mathrm{d} x$$, where $$(2 h-1)>0$$, then $$\frac{I_1}{I_2}$$ is

MHT CET 2023 11th May Morning Shift
32

$$\int_\limits{-1}^3\left(\cot ^{-1}\left(\frac{x}{x^2+1}\right)+\cot ^{-1}\left(\frac{x^2+1}{x}\right)\right) \mathrm{d} x=$$

MHT CET 2023 11th May Morning Shift
33

Let $$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$$ and $$\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$$ be continuous functions. Then the value of the integral $$\int_\limits{\frac{-\pi}{2}}^{\frac{\pi}{2}}[\mathrm{f}(x)+\mathrm{f}(-x)][\mathrm{g}(x)-\mathrm{g}(-x)] \mathrm{d} x$$ is

MHT CET 2023 10th May Evening Shift
34

$$\int_\limits 0^\pi \frac{x \tan x}{\sec x+\cos x} d x= $$

MHT CET 2023 10th May Evening Shift
35

$$\int_\limits0^1 \cos ^{-1} x d x=$$

MHT CET 2023 10th May Evening Shift
36

If $$\int_\limits0^{\frac{1}{2}} \frac{x^2}{\left(1-x^2\right)^{\frac{3}{2}}} \mathrm{~d} x=\frac{\mathrm{k}}{6}$$, then the value of $$\mathrm{k}$$ is

MHT CET 2023 10th May Morning Shift
37

$$\int_\limits1^2 \frac{\mathrm{d} x}{\left(x^2-2 x+4\right)^{\frac{3}{2}}}=\frac{\mathrm{k}}{\mathrm{k}+5} \text {, then } \mathrm{k} \text { has the value }$$

MHT CET 2023 9th May Evening Shift
38

If $$\mathrm{f}(x)$$ is a function satisfying $$\mathrm{f}^{\prime}(x)=\mathrm{f}(x)$$ with $$\mathrm{f}(0)=1$$ and $$\mathrm{g}(x)$$ is a function that satisfies $$\mathrm{f}(x)+\mathrm{g}(x)=x^2$$. Then the value of the integral $$\int_\limits0^1 f(x) g(x) d x$$ is

MHT CET 2023 9th May Morning Shift
39

$$\int_\limits{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{1+\cos x}$$ is equal to

MHT CET 2022 11th August Evening Shift
40

The value of the integral $$\int_\limits0^1 \sqrt{\frac{1-x}{1+x}} \mathrm{~d} x$$ is

MHT CET 2022 11th August Evening Shift
41

$$\int_\limits0^2[x] \mathrm{d} x+\int_\limits0^2|x-1| \mathrm{d} x=$$

(where $$[x]$$ denotes the greatest integer function.)

MHT CET 2022 11th August Evening Shift
42

$$\int_\limits2^5 2[\mathrm{x}] \mathrm{dx}=\{\text { where }[\mathrm{x}] \text { denotes the greatest integer function } \leq \mathrm{x}\}$$

MHT CET 2021 24th September Evening Shift
43

$$\int_\limits0^\pi x \sin x \cos ^4 x d x=$$

MHT CET 2021 24th September Evening Shift
44

$$\int_\limits0^4 x[x] d x=$$ (where $$[\mathrm{x}]$$ denotes greatest integer function not greater than $$\mathrm{x}]$$

MHT CET 2021 24th September Morning Shift
45

$$\int_\limits0^{\pi / 2} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x=$$

MHT CET 2021 24th September Morning Shift
46

$$\int_\limits0^\pi \frac{1}{4+3 \cos x} d x=$$

MHT CET 2021 23rd September Evening Shift
47

$$\int_\limits1^3\left[\tan ^{-1}\left(\frac{x}{x^2-1}\right)+\tan ^{-1}\left(\frac{x^2-1}{x}\right)\right] d x=$$

MHT CET 2021 23rd September Evening Shift
48

$$\int_\limits0^1|5 x-3| d x=$$

MHT CET 2021 23th September Morning Shift
49

$$\int_0^{\pi / 2} \frac{\cos x}{3 \cos x+\sin x} d x=$$

MHT CET 2021 23th September Morning Shift
50

$$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\operatorname{cosec} x \cdot \cot x}{1+\operatorname{cosec}^2 x} d x=$$

MHT CET 2021 22th September Evening Shift
51

$$\int_\limits0^2|2 x-3| d x=$$

MHT CET 2021 22th September Evening Shift
52

If $$\int_\limits0^a \sqrt{\frac{a-x}{x}} d x=\frac{k}{2}$$, then $$k=$$

MHT CET 2021 22th September Evening Shift
53

$$\int\limits_{ - \pi }^\pi {{{x\sin x} \over {1 + {{\cos }^2}x}}dx = } $$

MHT CET 2021 22th September Morning Shift
54

The value of $$\int\limits_0^1 {{{\tan }^{ - 1}}\left( {{{2x - 1} \over {1 + x - {x^2}}}} \right)dx} $$ is

MHT CET 2021 22th September Morning Shift
55

$$\int\limits_5^{10} \frac{d x}{(x-1)(x-2)}=$$

MHT CET 2021 21th September Evening Shift
56

$$\int\limits_{{{ - \pi } \over 2}}^{{\pi \over 2}} {{{\cos x} \over {1 + {e^x}}}dx = } $$

MHT CET 2021 21th September Evening Shift
57

$$\int_\limits0^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1-\sin x \cos x} d x=$$

MHT CET 2021 21th September Morning Shift
58

If $$f(x)=|x-1|+|x-2|+|x-3|, \forall x \in[1,4]$$, then $$\int_\limits1^4 f(x) d x=$$

MHT CET 2021 21th September Morning Shift
59

If $$2 f(x)-3 f\left(\frac{1}{x}\right)=x$$, then $$\int_\limits1^e f(x) d x=$$

MHT CET 2021 20th September Evening Shift
60

If $$\int_\limits2^e\left[\frac{1}{\log x}-\frac{1}{(\log x)^2}\right] d x=a+\frac{b}{\log 2}$$, then

MHT CET 2021 20th September Evening Shift
61

$$\int_\limits0^{\pi / 4} \log (1+\tan x) d x=$$

MHT CET 2021 20th September Morning Shift
62

If $$\int_\limits0^{\frac{\pi}{2}} \frac{d x}{5+4 \sin x}=A \tan ^{-1} B$$, then A + B =

MHT CET 2021 20th September Morning Shift
63

$\int_\limits0^1 \tan ^{-1}\left(\frac{2 x-1}{1+x-x^2}\right) d x=$

MHT CET 2020 19th October Evening Shift
64

The c.d.f, $F(x)$ associated with p.d.f. $f(x)=3\left(1-2 x^2\right)$. If $0< x<1$ is $k\left(x-\frac{2 x^3}{k}\right)$, then value of $k$ is

MHT CET 2020 19th October Evening Shift
65

$$\int_\limits0^{\frac{\pi}{2}} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=$$

MHT CET 2020 19th October Evening Shift
66

$\int_\limits0^1\left(1-\frac{x}{1!}+\frac{x^2}{2!}-\frac{x^3}{3!}+\ldots\right.$ upto $\left.\infty\right) e^{2 x} d x=$

MHT CET 2020 19th October Evening Shift
67

$$\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}}\left[\frac{\tan x}{\tan x+\cot x}\right] d x=$$

MHT CET 2020 16th October Evening Shift
68

$$\int_\limits0^1\left(\frac{x^2-2}{x^2+1}\right) d x=$$

MHT CET 2020 16th October Evening Shift
69

$$\int_\limits{-5}^5 \log \left(\frac{7-x}{7+x}\right) d x=$$

MHT CET 2020 16th October Evening Shift
70

$$\int_0^a \sqrt{\frac{x}{a-x}} d x=$$

MHT CET 2020 16th October Morning Shift
71

$$\int_\limits2^3 \frac{x}{x^2-1} d x=$$

MHT CET 2020 16th October Morning Shift
72

$$\int_\limits0^{\frac{\pi}{2}} \log \left[\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right] d x=$$

MHT CET 2020 16th October Morning Shift
73

$$\int_0^{\frac{\pi}{2}} \sqrt{\cos \theta} \cdot \sin ^3 \theta d \theta=$$ ............

MHT CET 2019 3rd May Morning Shift
74

$$\int_{\frac{\pi}{18}}^{\frac{4 \pi}{9}} \frac{2 \sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\ldots \ldots$$

MHT CET 2019 3rd May Morning Shift
75

$$\int_\limits a^b \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a+b-x}} d x=\ldots \ldots$$

MHT CET 2019 2nd May Evening Shift
76

$$\int_0^1 x(1-x)^5 d x=\ldots \ldots$$

MHT CET 2019 2nd May Evening Shift
77

If $\int_0^a \sqrt{\frac{a-x}{x}} d x=\frac{K}{2}$, then $K=\ldots .$.

MHT CET 2019 2nd May Evening Shift
78

The value of $\int_{-3}^3\left(a x^5+b x^3+c x+k\right) d x$, where $a, b, c, k$ are constants, depends only on

MHT CET 2019 2nd May Morning Shift
79

$$\int_0^4 \frac{1}{1+\sqrt{x}} d x=\ldots \ldots$$

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12