Properties of Triangles · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

In a triangle $\mathrm{ABC}, l(\mathrm{AB})=\sqrt{23}$ units, $l(\mathrm{BC})=3$ units, $l(\mathrm{CA})=4$ units, then $\frac{\cot A+\cot C}{\cot B}$ is

MHT CET 2024 16th May Evening Shift
2

In a triangle ABC , with usual notations, $2 \mathrm{ac} \sin \left(\frac{\mathrm{A}-\mathrm{B}+\mathrm{C}}{2}\right)$ is equal to

MHT CET 2024 16th May Morning Shift
3

In a triangle ABC , with usual notations, $\frac{\cos \mathrm{B}+\cos \mathrm{C}}{\mathrm{b}+\mathrm{c}}+\frac{\cos \mathrm{A}}{\mathrm{a}}$ has the value

MHT CET 2024 15th May Evening Shift
4

The angles of a triangle are in the ratio $5: 1: 6$, then ratio of the smallest side to the greatest side is

MHT CET 2024 11th May Evening Shift
5

In a $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{R}=\frac{\pi}{2}$. If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $a x^2+b x+c=0(a \neq 0)$, then

MHT CET 2024 11th May Evening Shift
6

If the sides of a triangle $a, b, c$ are in A.P., then with usual notations, a $\cos ^2 \frac{\mathrm{C}}{2}+\mathrm{c} \cos ^2 \frac{\mathrm{~A}}{2}$ is

MHT CET 2024 11th May Evening Shift
7

If in a triangle $A B C$, with usual notations, the angles are in A.P. and $b: c=\sqrt{3}: \sqrt{2}$, then angle $\mathrm{A}=$

MHT CET 2024 11th May Morning Shift
8

With usual notations, if the lengths of the sides of a triangle are $7 \mathrm{~cm}, 4 \sqrt{3} \mathrm{~cm}$ and $\sqrt{13} \mathrm{~cm}$, then the measures of the smallest angle is

MHT CET 2024 11th May Morning Shift
9

In a triangle ABC , with usual notations, if $\mathrm{m} \angle \mathrm{A}=45^{\circ}, \mathrm{m} \angle B=75^{\circ}$, then $\mathrm{a}+\mathrm{c} \sqrt{2}$ has the

MHT CET 2024 10th May Evening Shift
10

If the angles $\mathrm{A}, \mathrm{B}$ and C of a triangle ABC are in the ratio $2: 3: 7$ respectively, then the sides a, b and c are respectively in the ratio

MHT CET 2024 10th May Morning Shift
11

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle with $\tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}$ then the value of $\tan \frac{C}{2}$ is

MHT CET 2024 9th May Evening Shift
12

The sides of a triangle are $\sin \theta, \cos \theta$ and $\sqrt{1+\sin \theta \cos \theta}$ for some $0<\theta<\frac{\pi}{2}$, then the greatest angle of a triangle is

MHT CET 2024 9th May Morning Shift
13

For the triangle ABC , with usual notations, if the angles $A, B, C$ are in A.P. and $\mathrm{m} \angle \mathrm{A}=30^{\circ}, \mathrm{c}=3$, then the values of a and b are respectively

MHT CET 2024 9th May Morning Shift
14

If $(a+b) \cos C+(b+c) \cos A+(c+a) \cos B=72$ and if $a=18, b=24$, then area of the triangle $A B C$ is

MHT CET 2024 4th May Evening Shift
15

If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is

MHT CET 2024 4th May Morning Shift
16

In $\triangle \mathrm{ABC}$, with usual notations, if $\mathrm{b}=3$, $c=8, \mathrm{~m} \angle \mathrm{~A}=60^{\circ}$, then the circumradius of the triangle is _______ units.

MHT CET 2024 4th May Morning Shift
17

If the lengths of the sides of triangle are 3,5,7, then the largest angle of the triangle is

MHT CET 2024 2nd May Evening Shift
18

In $\triangle A B C$, with usual notations, if $\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{a+b+c}$, then $m \angle C$ is equal to

MHT CET 2024 2nd May Morning Shift
19

In a triangle $$\mathrm{A B C, m \angle A, m \angle B, m \angle C}$$ are in A.P. and lengths of two larger sides are 10 units, 9 units respectively, then the length (in units) of the third side is

MHT CET 2023 14th May Evening Shift
20

In $$\triangle \mathrm{ABC}$$, with usual notations, $$2 \mathrm{ac} \sin \left(\frac{1}{2}(\mathrm{~A}-\mathrm{B}+\mathrm{C})\right)$$ is equal to

MHT CET 2023 14th May Morning Shift
21

If the angles $$\mathrm{A}, \mathrm{B}$$, and $$\mathrm{C}$$ of a triangle are in an Arithmetic Progression and if $$\mathrm{a}, \mathrm{b}$$ and $$\mathrm{c}$$ denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $$\frac{\mathrm{a}}{\mathrm{c}} \sin 2 \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \sin 2 \mathrm{~A}$$ is

MHT CET 2023 14th May Morning Shift
22

In $$\triangle A B C$$, with usual notations, if $$\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$$, then the value of $$\cos A+\cos B+\cos C$$ is

MHT CET 2023 13th May Evening Shift
23

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one, then the sides of the triangle (in units) are

MHT CET 2023 13th May Morning Shift
24

In $$\triangle A B C$$ with usual notation, $$\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$$ and $$a=\frac{1}{\sqrt{6}}$$, then the area of triangle is _______ sq. units.

MHT CET 2023 13th May Morning Shift
25

Angles of a triangle are in the ratio $$4: 1: 1$$. Then the ratio of its greatest side to its perimeter is

MHT CET 2023 13th May Morning Shift
26

The lengths of sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Then the length of the sides of the triangle (in units) are

MHT CET 2023 12th May Evening Shift
27

If two angles of $$\triangle \mathrm{ABC}$$ are $$\frac{\pi}{4}$$ and $$\frac{\pi}{3}$$, then the ratio of the smallest and greatest sides are

MHT CET 2023 12th May Evening Shift
28

In $$\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{B}=\frac{\pi}{3}$$ and $$\mathrm{m} \angle \mathrm{C}=\frac{\pi}{4}$$. Let point $$\mathrm{D}$$ divide $$\mathrm{BC}$$ internally in the ratio $$1: 3$$, then $$\frac{\sin (\angle B A D)}{\sin (\angle C A D)}$$ has the value

MHT CET 2023 12th May Evening Shift
29

In a triangle, the sum of lengths of two sides is $$x$$ and the product of the lengths of the same two sides is $$y$$. If $$x^2-\mathrm{c}^2=y$$, where $$\mathrm{c}$$ is the length of the third side of the triangle, then the circumradius of the triangle is

MHT CET 2023 12th May Morning Shift
30

If the vertices of a triangle are $$(-2,3),(6,-1)$$ and $$(4,3)$$, then the co-ordinates of the circumcentre of the triangle are

MHT CET 2023 11th May Evening Shift
31

In triangle $$\mathrm{ABC}$$ with usual notations $$\mathrm{b}=\sqrt{3}, \mathrm{c}=1, \mathrm{~m} \angle \mathrm{A}=30^{\circ}$$, then the largest angle of the triangle is

MHT CET 2023 11th May Evening Shift
32

If the angles of a triangle are in the ratio $$4: 1: 1$$, then the ratio of the longest side to its perimeter is

MHT CET 2023 11th May Evening Shift
33

If in $$\triangle \mathrm{ABC}$$, with usual notations, $$a \cdot \cos ^2 \frac{C}{2}+c \cos ^2 \frac{A}{2}=\frac{3 b}{2}$$, then

MHT CET 2023 11th May Morning Shift
34

In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{b}=8, \mathrm{a}=6$$ and $$\mathrm{B}=\sin ^{-1} x$$, then $$x$$ has the value

MHT CET 2023 11th May Morning Shift
35

In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{c}=4$$, then value of $$(a-b)^2 \cos ^2 \frac{C}{2}+(a+b)^2 \sin ^2 \frac{C}{2}$$ is

MHT CET 2023 10th May Evening Shift
36

If one side of a triangle is double the other and the angles opposite to these sides differ by $$60^{\circ}$$, then the triangle is

MHT CET 2023 10th May Morning Shift
37

In $$\triangle \mathrm{PQR}, \sin \mathrm{P}, \sin \mathrm{Q}$$ and $$\sin \mathrm{R}$$ are in A.P., then

MHT CET 2023 9th May Evening Shift
38

Let $$a, b, c$$ be the lengths of sides of triangle $$A B C$$ such that $$\frac{a+b}{7}=\frac{b+c}{8}=\frac{c+a}{9}=k$$. Then $$\frac{(\mathrm{A}(\triangle \mathrm{ABC}))^2}{\mathrm{k}^4}=$$

MHT CET 2023 9th May Evening Shift
39

In $$\triangle \mathrm{ABC}$$, with usual notations, $$\mathrm{m} \angle \mathrm{C}=\frac{\pi}{2}$$, if $$\tan \left(\frac{A}{2}\right)$$ and $$\tan \left(\frac{B}{2}\right)$$ are the roots of the equation $$a_1 x^2+b_1 x+c_1=0\left(a_1 \neq 0\right)$$, then

MHT CET 2023 9th May Evening Shift
40

Two sides of a triangle are $$\sqrt{3}+1$$ and $$\sqrt{3}-1$$ and the included angle is $$60^{\circ}$$, then the difference of the remaining angles is

MHT CET 2023 9th May Morning Shift
41

In a triangle ABC with usual notations a = 2, b = 3, then value of $$\frac{\cos 2 \mathrm{~A}}{\mathrm{a}^2}-\frac{\cos 2 \mathrm{~B}}{\mathrm{~b}^2}$$ is

MHT CET 2021 24th September Evening Shift
42

In any $$\triangle A B C$$, with usual notations, $$c(a \cos B-b \cos A)=$$

MHT CET 2021 24th September Morning Shift
43

If in a $$\triangle A B C$$, with usual notations, $$\mathrm{a}^2, \mathrm{~b}^2, \mathrm{c}^2$$ are in A.P. then $$\frac{\sin 3 B}{\sin B}=$$

MHT CET 2021 24th September Morning Shift
44

If $$\mathrm{G}(\overline{\mathrm{g}}), \mathrm{H}(\overline{\mathrm{h}})$$ and $$\mathrm{P}(\overline{\mathrm{p}})$$ are respectively centroid, orthocenter and circumcentre of a triangle and $$\mathrm{x} \overline{\mathrm{p}}+\mathrm{y} \overline{\mathrm{h}}+z \overline{\mathrm{g}}=\overline{0}$$, then $$\mathrm{x}, \mathrm{y}, \mathrm{z}$$ are respectively.

MHT CET 2021 23rd September Evening Shift
45

With usual notations in $$\triangle$$ABC, if $$\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$$, then $$a^2, b^2, c^2$$ are in

MHT CET 2021 23rd September Evening Shift
46

The area of the triangle $$\mathrm{ABC}$$ is $$10 \sqrt{3} \mathrm{~cm}^2$$, angle $$\mathrm{B}$$ is $$60^{\circ}$$ and its perimeter is $$20 \mathrm{~cm}$$, then $$\ell(\mathrm{AC})=$$

MHT CET 2021 23rd September Evening Shift
47

In a triangle $$\mathrm{ABC}$$, with usual notations $$\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=5$$, then $$\frac{\cos \mathrm{A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{\cos \mathrm{C}}{\mathrm{c}}=$$

MHT CET 2021 23th September Morning Shift
48

In $$\Delta ABC$$, with usual notations $$\mathrm{\frac{b\sin B-c\sin C}{\sin(B-C)}}=$$

MHT CET 2021 22th September Evening Shift
49

With usual notations, in any $$\triangle A B C$$, if $$a\cos B=b \cos A$$, then the triangle is

MHT CET 2021 22th September Evening Shift
50

In $$\triangle A B C$$, with usual notations, $$2 a b \sin \frac{1}{2}(A+B-C)=$$

MHT CET 2021 22th September Morning Shift
51

If in $$\Delta$$ABC, with usual notations, the angles are in A.P., then $$\mathrm{\frac{a}{c}}$$ sin 2 C + $$\mathrm{\frac{c}{a}}$$ sin 2 A =

MHT CET 2021 22th September Morning Shift
52

With usual notations, perimeter of a triangle $$A B C$$ is 6 times the arithmetic mean of sine of its angles. If $$\mathrm{a}=1$$, then measure of angle $$\mathrm{A}=$$

MHT CET 2021 21th September Evening Shift
53

With usual notations if the angles of a triangle are in the ratio 1 : 2 : 3, then their corresponding sides are in the ratio.

MHT CET 2021 20th September Morning Shift
54

With usual notations, if the angles $A, B, C$ of a $\triangle A B C$ are in $A P$ and $b: c=\sqrt{3}: \sqrt{2}$

MHT CET 2020 19th October Evening Shift
55

The area of the $\triangle A B C$ is $10 \sqrt{3} \mathrm{~cm}^2$, angle $B$ is $60^{\circ}$ and its perimeter is 20 cm , then $\ell(A C)=$

MHT CET 2020 19th October Evening Shift
56

In a $$\triangle A B C$$ if $$2 \cos C=\sin B \cdot \operatorname{cosec} A$$, then

MHT CET 2020 16th October Evening Shift
57

In a triangle $$A B C$$ with usual notations, if $$\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$$, then area of triangle $$A B C$$ with $$a=\sqrt{6}$$ is

MHT CET 2020 16th October Morning Shift
58

In a triangle $$A B C$$, if $$\frac{\sin A-\sin C}{\cos C-\cos A}=\cot B$$, then $$A, B, C$$, are in

MHT CET 2020 16th October Morning Shift
59

In $\triangle A B C$, with the usual notations, if $\left(\tan \frac{A}{2}\right)\left(\tan \frac{B}{2}\right)=\frac{3}{4}$ then $a+b=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
60

In $\triangle A B C$, with the usual notations, if $\sin B \sin C=\frac{b c}{a^2}$, then the triangle is. ...........

MHT CET 2019 3rd May Morning Shift
61

If $R$ is the circum radius of $\triangle A B C$, then $A(\triangle A B C)=\ldots \ldots$

MHT CET 2019 2nd May Evening Shift
62

In $\triangle A B C$, if $\tan A+\tan B+\tan C=6$ and $\tan A \cdot \tan B=2$ then $\tan C=$ ...........

MHT CET 2019 2nd May Evening Shift
63

In $\triangle A B C$; with usual notations, $$\frac{b \sin B-c \sin C}{\sin (B-C)}=\ldots \ldots$$

MHT CET 2019 2nd May Evening Shift
64

In $\triangle A B C$; with usual notations, if $\cos A=\frac{\sin B}{\sin C}$ then the triangle is ............

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12