Properties of Triangles · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

In a triangle ABC , with usual notations. $\frac{2 \cos \mathrm{~A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{2 \cos \mathrm{C}}{\mathrm{c}}=\frac{\mathrm{a}}{\mathrm{bc}}+\frac{\mathrm{b}}{\mathrm{ca}}$. Then $\angle \mathrm{A}=$

MHT CET 2025 25th April Morning Shift
2

If in triangle ABC , with usual notations $\sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{C}}{2}=\sin \frac{\mathrm{B}}{2}$ and 2 s is the perimeter of the triangle, then the value of $s$ is

MHT CET 2025 25th April Morning Shift
3

Let $\mathrm{A} \equiv(0,0), \mathrm{B}(3,0), \mathrm{C}(0,-4)$ are vertices of $\triangle A B C$, then the co-ordinates of incentre of $\triangle \mathrm{ABC}$ is

MHT CET 2025 23rd April Evening Shift
4
In a triangle ABC with usual notations if $b \sin C(b \cos C+c \cos B)=42$, then area of triangle $\mathrm{ABC}=$
MHT CET 2025 23rd April Evening Shift
5

In a triangle with one of the angles $120^{\circ}$, the lengths of the sides form an A.P. If length of the greatest side is 7 m , then the area of the triangle is

MHT CET 2025 23rd April Evening Shift
6

In $\triangle \mathrm{ABC}$, with usual notations, if $\cos \frac{B}{2}=\sqrt{\frac{c+a}{2 a}}$, then $a^2=$

MHT CET 2025 23rd April Morning Shift
7

In a triangle ABC with usual notations, $\cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=$

MHT CET 2025 23rd April Morning Shift
8

With usual notations, in $\triangle \mathrm{ABC}$, the lengths of two sides are 10 cm and 9 cm respectively. If angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are in A.P. then perimeter of $\triangle \mathrm{ABC}$ is

MHT CET 2025 23rd April Morning Shift
9

In a triangle ABC , with usual notations, if $\mathrm{a}=5, \mathrm{~b}=4, \cos (\mathrm{~A}-\mathrm{B})=\frac{31}{32}$, then $\mathrm{c}=$

MHT CET 2025 23rd April Morning Shift
10

In a triangle ABC with usual notations if, $\cot \frac{A}{2}=\frac{b+c}{a}$, then the triangle $A B C$ is

MHT CET 2025 22nd April Evening Shift
11

In a triangle ABC with usual notations, if $3 \mathrm{a}=\mathrm{b}+\mathrm{c}$, then $\cot \frac{\mathrm{B}}{2} \cdot \cot \frac{\mathrm{C}}{2}=$

MHT CET 2025 22nd April Evening Shift
12

In $\triangle A B C$, with usual notations, if $\mathrm{a}^4+\mathrm{b}^4+\mathrm{c}^4-2 \mathrm{a}^2 \mathrm{c}^2-2 \mathrm{c}^2 \mathrm{~b}^2=0$, then $\angle \mathrm{C}=\ldots$

MHT CET 2025 22nd April Morning Shift
13

In a triangle ABC with usual notations if, $\tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=x \cot \frac{\mathrm{~A}}{2}$, then $x=$

MHT CET 2025 22nd April Morning Shift
14

With usual notations, the perimeter of a triangle ABC is 6 times the arithmetic mean of sine of its angles. If $\mathrm{a}=1$, then $\angle \mathrm{A}=$

MHT CET 2025 21st April Evening Shift
15

In a triangle ABC , with usual notations, $\tan \left(\frac{\mathrm{A}}{2}\right)=\frac{5}{6}, \tan \left(\frac{\mathrm{C}}{2}\right)=\frac{2}{5}$, then

MHT CET 2025 21st April Evening Shift
16

With usual notation, in triangle ABC , $\mathrm{m} \angle \mathrm{A}=30^{\circ}$ then the value of $\left(1+\frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}}\right)\left(1+\frac{\mathrm{c}}{\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{b}}\right)$ is equal to

MHT CET 2025 21st April Morning Shift
17

In $\triangle A B C$, with usual notations, $a \cos B=b \cos A, a \cos C \neq c \cos A$ then $\mathrm{A}(\triangle \mathrm{ABC})$ $\qquad$ sq. units.

MHT CET 2025 21st April Morning Shift
18

In a triangle ABC , with usual notations if $\mathrm{a}=4, \mathrm{~b}=8, \angle \mathrm{C}=60^{\circ}$, then the value of $\angle \mathrm{B}$ and the ratio $\cos \mathrm{A}: \cos \mathrm{C}$ respectively are,

MHT CET 2025 21st April Morning Shift
19

In a triangle ABC with usual notations if $|\overline{\mathrm{BC}}|=8,|\overline{\mathrm{CA}}|=7,|\overline{\mathrm{AB}}|=10$ then the projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{AC}}$ is

MHT CET 2025 20th April Evening Shift
20

In a triangle ABC , the sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are such that they are the roots of the equation $x^3-11 x^2+38 x-40=0$ Then

$$ \frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}= $$

MHT CET 2025 20th April Evening Shift
21

In a triangle ABC with usual notations if $\mathrm{a}=13$, $b=14, c=15$ Then $\sin A=$

MHT CET 2025 20th April Evening Shift
22

In a triangle $A B C$, with usual notations, $3 \mathrm{~b}=\mathrm{a}+\mathrm{c}$, then $\cot \frac{\mathrm{A}}{2} \cdot \cot \frac{\mathrm{C}}{2}=$

MHT CET 2025 20th April Evening Shift
23

In a triangle ABC , with usual notations if $\frac{2 \cos \mathrm{~A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{2 \cos \mathrm{C}}{\mathrm{c}}=\frac{\mathrm{a}}{\mathrm{bc}}+\frac{\mathrm{b}}{\mathrm{ca}}$ then $\angle \mathrm{A}=$

MHT CET 2025 20th April Morning Shift
24

In a triangle ABC with usual notations, if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in arithmetic progression, then, $\tan \frac{\mathrm{A}}{2} \cdot \tan \frac{\mathrm{C}}{2}=$

MHT CET 2025 20th April Morning Shift
25

With usual notations, in a triangle $A B C$, if $\theta$ is any real number, then $a \cos (B-\theta)+b \cos (A+\theta)$ is

MHT CET 2025 20th April Morning Shift
26

If two sides of a triangle are $\sqrt{3}-2$ and $\sqrt{3}+2$ units and their included angle is $60^{\circ}$, then the third side of the triangle is

MHT CET 2025 19th April Evening Shift
27
The ratios of sides in a triangle ABC are $5: 12: 13$ and its area is 270 . Then sides of the triangle are
MHT CET 2025 19th April Morning Shift
28
The smallest angle of the triangle whose sides are $6+\sqrt{12}, \sqrt{48}, \sqrt{24}$ is
MHT CET 2025 19th April Morning Shift
29
In a triangle $A B C$, with usual notations, if $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$ Then $\cos \mathrm{A}: \cos \mathrm{B}: \cos \mathrm{C}$ is
MHT CET 2025 19th April Morning Shift
30

In a triangle $\mathrm{ABC}, l(\mathrm{AB})=\sqrt{23}$ units, $l(\mathrm{BC})=3$ units, $l(\mathrm{CA})=4$ units, then $\frac{\cot A+\cot C}{\cot B}$ is

MHT CET 2024 16th May Evening Shift
31

In a triangle ABC , with usual notations, $2 \mathrm{ac} \sin \left(\frac{\mathrm{A}-\mathrm{B}+\mathrm{C}}{2}\right)$ is equal to

MHT CET 2024 16th May Morning Shift
32

In a triangle ABC , with usual notations, $\frac{\cos \mathrm{B}+\cos \mathrm{C}}{\mathrm{b}+\mathrm{c}}+\frac{\cos \mathrm{A}}{\mathrm{a}}$ has the value

MHT CET 2024 15th May Evening Shift
33

The angles of a triangle are in the ratio $5: 1: 6$, then ratio of the smallest side to the greatest side is

MHT CET 2024 11th May Evening Shift
34

In a $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{R}=\frac{\pi}{2}$. If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $a x^2+b x+c=0(a \neq 0)$, then

MHT CET 2024 11th May Evening Shift
35

If the sides of a triangle $a, b, c$ are in A.P., then with usual notations, a $\cos ^2 \frac{\mathrm{C}}{2}+\mathrm{c} \cos ^2 \frac{\mathrm{~A}}{2}$ is

MHT CET 2024 11th May Evening Shift
36

If in a triangle $A B C$, with usual notations, the angles are in A.P. and $b: c=\sqrt{3}: \sqrt{2}$, then angle $\mathrm{A}=$

MHT CET 2024 11th May Morning Shift
37

With usual notations, if the lengths of the sides of a triangle are $7 \mathrm{~cm}, 4 \sqrt{3} \mathrm{~cm}$ and $\sqrt{13} \mathrm{~cm}$, then the measures of the smallest angle is

MHT CET 2024 11th May Morning Shift
38

In a triangle ABC , with usual notations, if $\mathrm{m} \angle \mathrm{A}=45^{\circ}, \mathrm{m} \angle B=75^{\circ}$, then $\mathrm{a}+\mathrm{c} \sqrt{2}$ has the

MHT CET 2024 10th May Evening Shift
39

If the angles $\mathrm{A}, \mathrm{B}$ and C of a triangle ABC are in the ratio $2: 3: 7$ respectively, then the sides a, b and c are respectively in the ratio

MHT CET 2024 10th May Morning Shift
40

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle with $\tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}$ then the value of $\tan \frac{C}{2}$ is

MHT CET 2024 9th May Evening Shift
41

The sides of a triangle are $\sin \theta, \cos \theta$ and $\sqrt{1+\sin \theta \cos \theta}$ for some $0<\theta<\frac{\pi}{2}$, then the greatest angle of a triangle is

MHT CET 2024 9th May Morning Shift
42

For the triangle ABC , with usual notations, if the angles $A, B, C$ are in A.P. and $\mathrm{m} \angle \mathrm{A}=30^{\circ}, \mathrm{c}=3$, then the values of a and b are respectively

MHT CET 2024 9th May Morning Shift
43

If $(a+b) \cos C+(b+c) \cos A+(c+a) \cos B=72$ and if $a=18, b=24$, then area of the triangle $A B C$ is

MHT CET 2024 4th May Evening Shift
44

If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is

MHT CET 2024 4th May Morning Shift
45

In $\triangle \mathrm{ABC}$, with usual notations, if $\mathrm{b}=3$, $c=8, \mathrm{~m} \angle \mathrm{~A}=60^{\circ}$, then the circumradius of the triangle is _______ units.

MHT CET 2024 4th May Morning Shift
46

If the lengths of the sides of triangle are 3,5,7, then the largest angle of the triangle is

MHT CET 2024 2nd May Evening Shift
47

In $\triangle A B C$, with usual notations, if $\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{a+b+c}$, then $m \angle C$ is equal to

MHT CET 2024 2nd May Morning Shift
48

In a triangle $$\mathrm{A B C, m \angle A, m \angle B, m \angle C}$$ are in A.P. and lengths of two larger sides are 10 units, 9 units respectively, then the length (in units) of the third side is

MHT CET 2023 14th May Evening Shift
49

In $$\triangle \mathrm{ABC}$$, with usual notations, $$2 \mathrm{ac} \sin \left(\frac{1}{2}(\mathrm{~A}-\mathrm{B}+\mathrm{C})\right)$$ is equal to

MHT CET 2023 14th May Morning Shift
50

If the angles $$\mathrm{A}, \mathrm{B}$$, and $$\mathrm{C}$$ of a triangle are in an Arithmetic Progression and if $$\mathrm{a}, \mathrm{b}$$ and $$\mathrm{c}$$ denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $$\frac{\mathrm{a}}{\mathrm{c}} \sin 2 \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \sin 2 \mathrm{~A}$$ is

MHT CET 2023 14th May Morning Shift
51

In $$\triangle A B C$$, with usual notations, if $$\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$$, then the value of $$\cos A+\cos B+\cos C$$ is

MHT CET 2023 13th May Evening Shift
52

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one, then the sides of the triangle (in units) are

MHT CET 2023 13th May Morning Shift
53

In $$\triangle A B C$$ with usual notation, $$\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$$ and $$a=\frac{1}{\sqrt{6}}$$, then the area of triangle is _______ sq. units.

MHT CET 2023 13th May Morning Shift
54

Angles of a triangle are in the ratio $$4: 1: 1$$. Then the ratio of its greatest side to its perimeter is

MHT CET 2023 13th May Morning Shift
55

The lengths of sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Then the length of the sides of the triangle (in units) are

MHT CET 2023 12th May Evening Shift
56

If two angles of $$\triangle \mathrm{ABC}$$ are $$\frac{\pi}{4}$$ and $$\frac{\pi}{3}$$, then the ratio of the smallest and greatest sides are

MHT CET 2023 12th May Evening Shift
57

In $$\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{B}=\frac{\pi}{3}$$ and $$\mathrm{m} \angle \mathrm{C}=\frac{\pi}{4}$$. Let point $$\mathrm{D}$$ divide $$\mathrm{BC}$$ internally in the ratio $$1: 3$$, then $$\frac{\sin (\angle B A D)}{\sin (\angle C A D)}$$ has the value

MHT CET 2023 12th May Evening Shift
58

In a triangle, the sum of lengths of two sides is $$x$$ and the product of the lengths of the same two sides is $$y$$. If $$x^2-\mathrm{c}^2=y$$, where $$\mathrm{c}$$ is the length of the third side of the triangle, then the circumradius of the triangle is

MHT CET 2023 12th May Morning Shift
59

If the vertices of a triangle are $$(-2,3),(6,-1)$$ and $$(4,3)$$, then the co-ordinates of the circumcentre of the triangle are

MHT CET 2023 11th May Evening Shift
60

In triangle $$\mathrm{ABC}$$ with usual notations $$\mathrm{b}=\sqrt{3}, \mathrm{c}=1, \mathrm{~m} \angle \mathrm{A}=30^{\circ}$$, then the largest angle of the triangle is

MHT CET 2023 11th May Evening Shift
61

If the angles of a triangle are in the ratio $$4: 1: 1$$, then the ratio of the longest side to its perimeter is

MHT CET 2023 11th May Evening Shift
62

If in $$\triangle \mathrm{ABC}$$, with usual notations, $$a \cdot \cos ^2 \frac{C}{2}+c \cos ^2 \frac{A}{2}=\frac{3 b}{2}$$, then

MHT CET 2023 11th May Morning Shift
63

In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{b}=8, \mathrm{a}=6$$ and $$\mathrm{B}=\sin ^{-1} x$$, then $$x$$ has the value

MHT CET 2023 11th May Morning Shift
64

In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{c}=4$$, then value of $$(a-b)^2 \cos ^2 \frac{C}{2}+(a+b)^2 \sin ^2 \frac{C}{2}$$ is

MHT CET 2023 10th May Evening Shift
65

If one side of a triangle is double the other and the angles opposite to these sides differ by $$60^{\circ}$$, then the triangle is

MHT CET 2023 10th May Morning Shift
66

In $$\triangle \mathrm{PQR}, \sin \mathrm{P}, \sin \mathrm{Q}$$ and $$\sin \mathrm{R}$$ are in A.P., then

MHT CET 2023 9th May Evening Shift
67

Let $$a, b, c$$ be the lengths of sides of triangle $$A B C$$ such that $$\frac{a+b}{7}=\frac{b+c}{8}=\frac{c+a}{9}=k$$. Then $$\frac{(\mathrm{A}(\triangle \mathrm{ABC}))^2}{\mathrm{k}^4}=$$

MHT CET 2023 9th May Evening Shift
68

In $$\triangle \mathrm{ABC}$$, with usual notations, $$\mathrm{m} \angle \mathrm{C}=\frac{\pi}{2}$$, if $$\tan \left(\frac{A}{2}\right)$$ and $$\tan \left(\frac{B}{2}\right)$$ are the roots of the equation $$a_1 x^2+b_1 x+c_1=0\left(a_1 \neq 0\right)$$, then

MHT CET 2023 9th May Evening Shift
69

Two sides of a triangle are $$\sqrt{3}+1$$ and $$\sqrt{3}-1$$ and the included angle is $$60^{\circ}$$, then the difference of the remaining angles is

MHT CET 2023 9th May Morning Shift
70

In a triangle ABC with usual notations a = 2, b = 3, then value of $$\frac{\cos 2 \mathrm{~A}}{\mathrm{a}^2}-\frac{\cos 2 \mathrm{~B}}{\mathrm{~b}^2}$$ is

MHT CET 2021 24th September Evening Shift
71

In any $$\triangle A B C$$, with usual notations, $$c(a \cos B-b \cos A)=$$

MHT CET 2021 24th September Morning Shift
72

If in a $$\triangle A B C$$, with usual notations, $$\mathrm{a}^2, \mathrm{~b}^2, \mathrm{c}^2$$ are in A.P. then $$\frac{\sin 3 B}{\sin B}=$$

MHT CET 2021 24th September Morning Shift
73

If $$\mathrm{G}(\overline{\mathrm{g}}), \mathrm{H}(\overline{\mathrm{h}})$$ and $$\mathrm{P}(\overline{\mathrm{p}})$$ are respectively centroid, orthocenter and circumcentre of a triangle and $$\mathrm{x} \overline{\mathrm{p}}+\mathrm{y} \overline{\mathrm{h}}+z \overline{\mathrm{g}}=\overline{0}$$, then $$\mathrm{x}, \mathrm{y}, \mathrm{z}$$ are respectively.

MHT CET 2021 23rd September Evening Shift
74

With usual notations in $$\triangle$$ABC, if $$\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$$, then $$a^2, b^2, c^2$$ are in

MHT CET 2021 23rd September Evening Shift
75

The area of the triangle $$\mathrm{ABC}$$ is $$10 \sqrt{3} \mathrm{~cm}^2$$, angle $$\mathrm{B}$$ is $$60^{\circ}$$ and its perimeter is $$20 \mathrm{~cm}$$, then $$\ell(\mathrm{AC})=$$

MHT CET 2021 23rd September Evening Shift
76

In a triangle $$\mathrm{ABC}$$, with usual notations $$\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=5$$, then $$\frac{\cos \mathrm{A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{\cos \mathrm{C}}{\mathrm{c}}=$$

MHT CET 2021 23th September Morning Shift
77

In $$\Delta ABC$$, with usual notations $$\mathrm{\frac{b\sin B-c\sin C}{\sin(B-C)}}=$$

MHT CET 2021 22th September Evening Shift
78

With usual notations, in any $$\triangle A B C$$, if $$a\cos B=b \cos A$$, then the triangle is

MHT CET 2021 22th September Evening Shift
79

In $$\triangle A B C$$, with usual notations, $$2 a b \sin \frac{1}{2}(A+B-C)=$$

MHT CET 2021 22th September Morning Shift
80

If in $$\Delta$$ABC, with usual notations, the angles are in A.P., then $$\mathrm{\frac{a}{c}}$$ sin 2 C + $$\mathrm{\frac{c}{a}}$$ sin 2 A =

MHT CET 2021 22th September Morning Shift
81

With usual notations, perimeter of a triangle $$A B C$$ is 6 times the arithmetic mean of sine of its angles. If $$\mathrm{a}=1$$, then measure of angle $$\mathrm{A}=$$

MHT CET 2021 21th September Evening Shift
82

With usual notations if the angles of a triangle are in the ratio 1 : 2 : 3, then their corresponding sides are in the ratio.

MHT CET 2021 20th September Morning Shift
83

With usual notations, if the angles $A, B, C$ of a $\triangle A B C$ are in $A P$ and $b: c=\sqrt{3}: \sqrt{2}$

MHT CET 2020 19th October Evening Shift
84

The area of the $\triangle A B C$ is $10 \sqrt{3} \mathrm{~cm}^2$, angle $B$ is $60^{\circ}$ and its perimeter is 20 cm , then $\ell(A C)=$

MHT CET 2020 19th October Evening Shift
85

In a $$\triangle A B C$$ if $$2 \cos C=\sin B \cdot \operatorname{cosec} A$$, then

MHT CET 2020 16th October Evening Shift
86

In a triangle $$A B C$$ with usual notations, if $$\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$$, then area of triangle $$A B C$$ with $$a=\sqrt{6}$$ is

MHT CET 2020 16th October Morning Shift
87

In a triangle $$A B C$$, if $$\frac{\sin A-\sin C}{\cos C-\cos A}=\cot B$$, then $$A, B, C$$, are in

MHT CET 2020 16th October Morning Shift
88

In $\triangle A B C$, with the usual notations, if $\left(\tan \frac{A}{2}\right)\left(\tan \frac{B}{2}\right)=\frac{3}{4}$ then $a+b=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
89

In $\triangle A B C$, with the usual notations, if $\sin B \sin C=\frac{b c}{a^2}$, then the triangle is. ...........

MHT CET 2019 3rd May Morning Shift
90

If $R$ is the circum radius of $\triangle A B C$, then $A(\triangle A B C)=\ldots \ldots$

MHT CET 2019 2nd May Evening Shift
91

In $\triangle A B C$, if $\tan A+\tan B+\tan C=6$ and $\tan A \cdot \tan B=2$ then $\tan C=$ ...........

MHT CET 2019 2nd May Evening Shift
92

In $\triangle A B C$; with usual notations, $$\frac{b \sin B-c \sin C}{\sin (B-C)}=\ldots \ldots$$

MHT CET 2019 2nd May Evening Shift
93

In $\triangle A B C$; with usual notations, if $\cos A=\frac{\sin B}{\sin C}$ then the triangle is ............

MHT CET 2019 2nd May Morning Shift
EXAM MAP