1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)=\left\{\begin{array}{cl}\frac{\cos a x-\cos b x}{\cos c x-\cos b x} & , \text { if } x \neq 0 \\ -1 & , \text { if } x=0\end{array}\right.$ is continuous at $x=0$, then $\mathrm{a}^2, \mathrm{~b}^2, \mathrm{c}^2$ are in

A

Geometric progression

B

Arithmetic progression

C

Harmonic progression

D

Arithmetico-Geometric progression

$$ $$
2
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to \infty } \frac{(2 x+1)^{50}+(2 x+2)^{50}+(2 x+3)^{50}+\cdots+(2 x+100)^{50}}{(2 x)^{50}+(10)^{50}}= $$

A

50

B

100

C

25

D

200

3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 0} \frac{63^x-9^x-7^x+1}{\sqrt{2}-\sqrt{1+\cos x}}=\ldots \ldots $$

A
$\frac{4 \sqrt{2}}{\log 7 \cdot \log 9}$
B
$4 \sqrt{2} \log 7 \cdot \log 9$
C
$4 \sqrt{2} \log 63$
D
$\frac{\log 7 \cdot \log 9}{4 \sqrt{2}}$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable function having $\mathrm{f}(3)=3, \mathrm{f}^{\prime}(3)=\frac{1}{27}$ and $\mathrm{g}(x)= \begin{cases}\int_3^{\mathrm{f}(x)} \frac{3 \mathrm{t}^2}{x-3} \mathrm{dt}, & \text { if } x \neq 3 \\ \mathrm{~K}, & \text { if } x=3\end{cases}$ is continuous at $x=3$, then $\mathrm{K}=$

A
1
B
3
C
$\frac{1}{3}$
D
9
MHT CET Subjects
EXAM MAP