Vector Algebra · Mathematics · MHT CET
MCQ (Single Correct Answer)
If $\overline{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=2 \hat{i}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ are two vectors, then the angle between the vectors $3 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}$ and $5 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}$ is
If $\overline{\mathrm{a}}$ is perpendicular to $\bar{b}$ and $\bar{c},|\bar{a}|=2$, $|\overline{\mathrm{b}}|=3,|\overline{\mathrm{c}}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{3}$, then $\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]=$
If $\bar{a}=2 \hat{i}-\hat{j}+\hat{k}, \bar{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\bar{c}=4 \hat{i}-2 \hat{j}+\hat{k}$, then the unit vector in the direction of $3 \overline{\mathrm{a}}+\overline{\mathrm{b}}-2 \overline{\mathrm{c}}$ is
If $\bar{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \quad \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\bar{c}=3 \hat{i}+\hat{j}$ are the vectors such that $\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$ is perpendicular to $\bar{c}$, then value of $\lambda$ is
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three vectors such that $\overline{\mathrm{a}} \neq \overline{0}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=2 \overline{\mathrm{a}} \times \overline{\mathrm{c}},|\overline{\mathrm{a}}|=|\overline{\mathrm{c}}|=1,|\overline{\mathrm{~b}}|=4$ and $|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=\sqrt{15}$. If $\overline{\mathrm{b}}-2 \overline{\mathrm{c}}=\lambda \overline{\mathrm{a}}$, then $\lambda$ is
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit coplanar vectors, then the scalar triple product $\left[\begin{array}{lll}2 \overline{\mathrm{a}}-\overline{\mathrm{b}} & 2 \overline{\mathrm{~b}}-\overline{\mathrm{c}} & 2 \overline{\mathrm{c}}-\overline{\mathrm{a}}\end{array}\right]$ has the value
Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\bar{a}|=2,|\bar{b}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\bar{c}$ on $\bar{a}$ and $\bar{b}$ is perpendicular to $\bar{c}$, then the value of $|\vec{a}+\bar{b}-\bar{c}|$ is
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\mathrm{c}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\sin \theta$ is
If $\left[\begin{array}{lll}\overline{\mathrm{a}} \times \overline{\mathrm{b}} & \overline{\mathrm{b}} \times \overline{\mathrm{c}} & \overline{\mathrm{c}} \times \overline{\mathrm{a}}\end{array}\right]=\lambda\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]^2$, then $\lambda$ is equal to
If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median, through $A$, is
If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $\bar{a}+2 \bar{b}$ and $5 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is
Let $P, Q, R$ and $S$ be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. Then the quadrilateral PQRS must be a
If the points $\mathrm{P}, \mathrm{Q}$ and R are with the position vectors $\hat{i}-2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}+2 \hat{k}$ and $-8 \hat{i}+13 \hat{j}$ respectively, then these points are
One side and one diagonal of a parallelogram are represented by $3 \hat{i}+\hat{j}-\hat{k}$ and $2 \hat{i}+\hat{j}-2 \hat{k}$ respectively, then the area of parallelogram in square units is
If the vector $\overline{\mathrm{c}}$ lies in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, where $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=x \hat{\mathrm{i}}-(2-x) \hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the value of $x$ is
Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\bar{v}$ in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is given by
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are two unit vectors such that $5 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}$ and $\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is
Let $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. If $\bar{c}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$ is equal to
If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{pi}+\hat{\mathrm{j}}+\mathrm{q} \hat{\mathrm{k}}$ are mutually orthogonal, then $(p, q)$ is equal to
If $\bar{u}, \bar{v}$ and $\bar{w}$ are three non-coplanar vectors, then $(\bar{u}+\bar{v}-\bar{w}) \cdot[(\bar{u}-\bar{v}) \times(\bar{v}-\bar{w})]$ is equal to
Let $\overline{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \overline{\mathrm{v}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$ and $\overline{\mathrm{w}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$. If $\hat{\mathrm{n}}$ is a unit vector such that $\overline{\mathbf{u}} \cdot \hat{\mathrm{n}}=0$ and $\overline{\mathrm{v}} \cdot \hat{\mathrm{n}}=0$, then $|\overline{\mathrm{w}} \cdot \hat{\mathrm{n}}|$ is equal to
Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\sqrt{3}}{2}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})$. If $\bar{b}$ is not parallel to $\bar{c}$, then the angle between $\bar{a}$ and $\bar{b}$ is
If $\hat{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\hat{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \hat{a}-\hat{b}) \cdot[(\hat{a} \times \hat{b}) \times(\hat{a}+2 \hat{b})]$ is
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$, and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of these are collinear. If the vector $\bar{a}+2 \bar{b}$ is collinear with $\bar{c}$ and $\bar{b}+3 \bar{c}$ is collinear with $\overline{\mathrm{a}}$, then $\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}}$ equals
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{(\overline{\mathrm{b}}+\overline{\mathrm{c}})}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\bar{b}$ is
The number of unit vectors perpendicular to $\overline{\mathrm{a}}=(1,1,0)$ and $\overline{\mathrm{b}}=(0,1,1)$ is
If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+\mu \hat{\mathrm{k}}$ are mutually orthogonal, then $(\lambda, \mu) \equiv$
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\overline{\mathrm{c}}| \overline{\mathrm{a}}$. If ' $\theta$ ' is the angle between the vectors $\bar{b}$ and $\bar{c}$, then value of $\sin \theta$ is
If $\bar{x}=\frac{\bar{b} \times \bar{c}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \bar{y}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ and $\overline{\mathrm{z}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ where $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors, then value of $\bar{x} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\bar{y} \cdot(\overline{\mathrm{~b}}+\overline{\mathrm{c}})+\overline{\mathrm{z}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})$ is
If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $5 \bar{a}+4 \bar{b}$ and $\bar{a}-2 \bar{b}$ are perpendicular to each other, then the between $\bar{a}$ and $\bar{b}$ is
Let two non-collinear unit vectors $\hat{\mathrm{a}}$ and $\hat{\mathrm{b}}$ form an acute angle. A point P moves, so that at any time $t$ the position vector $\overline{O P}$, where $O$ is the origin, is given by $\hat{a} \cos t+\hat{b} \sin t$. When $P$ is farthest from origin O , let M be the length of $\overline{\mathrm{OP}}$ and $\hat{\mathrm{u}}$ be the unit vector along $\overline{\mathrm{OP}}$, then
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are mutually perpendicular vectors having magnitudes $1,2,3$ respectively, then the value of $\left[\begin{array}{lll}\bar{a}+\bar{b}+\bar{c} & \bar{b}-\bar{a} & \bar{c}\end{array}\right]$ is
The vector of magnitude 6 units and perpendicular to vectors $2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ is
If $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$ is
$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=4 \hat{\mathrm{i}}-2 \hat{j}+3 \hat{k}, \overline{\mathrm{c}}=\hat{i}-2 \hat{j}+\hat{k}$, then $a$ vector of magnitude 6 units, which is parallel to the vector $2 \bar{a}-\bar{b}+3 c$, is
If $\overline{\mathrm{a}}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\bar{c}=3 \hat{i}+\hat{j}$ such that $\overline{\mathrm{b}}+\lambda \overline{\mathrm{a}}$ is perpendicular to $\overline{\mathrm{c}}$, then $\lambda$ is
If $\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{k}}, \overline{\mathrm{b}}=x \hat{\mathrm{i}}+\hat{\mathrm{j}}+(1-x) \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{c}}=y \hat{\mathrm{i}}+x \hat{\mathrm{j}}+(1+x-y) \hat{\mathrm{k}}$ then $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ depends on
Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three vectors having magnitudes 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ are unit vectors inclined at $\frac{\pi}{3}$ with each other and $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then the value of $5[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$
If $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=3$ and $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are mutually perpendicular vectors, then the area of the triangle whose vertices are $0, a+2 b, a-2 b$ is
Let $\bar{A}, \bar{B}, \bar{C}$ be vectors of lengths 3 units, 4 units, 5 units respectively. let $\bar{A}$ be perpendicular to $\overline{\mathrm{B}}+\overline{\mathrm{C}}, \overline{\mathrm{B}}$ be perpendicular to $\overline{\mathrm{C}}+\overline{\mathrm{A}}$ and $\overline{\mathrm{C}}$ be perpendicular to $\bar{A}+\bar{B}$, then the length of vector $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$ is
Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\overline{\mathrm{c}}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\operatorname{cosec} \theta$ is
Let $\quad \overline{\mathrm{a}}=\alpha \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \quad \overline{\mathrm{b}}=3 \hat{\mathrm{i}}-\beta \hat{\mathrm{j}}+4 \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$, where $\alpha, \beta \in \mathbb{R}$, be three vectors. If the projection at $\overline{\mathrm{a}}$ on $\overline{\mathrm{c}}$ is $\frac{10}{3}$ and $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=-6 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$, then the value of $\alpha^2+\beta^2-\alpha \beta$ is equal to
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be vectors of magnitude 2,3 and 4 respectively. If $\bar{a}$ is perpendicular to $(\bar{b}+\bar{c}), \bar{b}$ is perpendicular to $(\bar{c}+\bar{a})$ and $\bar{c}$ is perpendicular to $(\bar{a}+\bar{b})$, then the magnitude of $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$ is equal to
The vector $\bar{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and bisects the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$. Then which one of the following gives possible values of $\alpha$ and $\beta$ ?
A unit vector coplanar with $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ and perpendicular to $\hat{i}+\hat{j}-\hat{k}$ is
Let $\bar{a}=3 \hat{i}-\alpha \hat{j}+\hat{k}$ and $\bar{b}=\hat{i}+\alpha \hat{j}+3 \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, is $8 \sqrt{3}$ sq. units, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is equal to
Let $\hat{a}$ and $\hat{b}$ be two unit vectors. If the vectors $\overline{\mathrm{c}}=\hat{\mathrm{a}}+2 \hat{\mathrm{~b}}$ and $\overline{\mathrm{d}}=5 \hat{\mathrm{a}}+4 \hat{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\hat{a}$ and $\hat{b}$ is
If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]$ equals
Suppose that $\bar{p}, \bar{q}$ and $\overline{\mathrm{r}}$ are three non-coplanar vectors in $\mathbb{R}^3$. Let the components of a vector $\overline{\mathrm{s}}$ along $\overline{\mathrm{p}}, \overline{\mathrm{q}}$ and $\overline{\mathrm{r}}$ be 4,3 and 5 respectively. If the components of this vector $\overline{\mathrm{s}}$ along $(-\overline{\mathrm{p}}+\overline{\mathrm{q}}+\overline{\mathrm{r}}),(\overline{\mathrm{p}}-\overline{\mathrm{q}}+\overline{\mathrm{r}})$ and $(-\overline{\mathrm{p}}-\overline{\mathrm{q}}+\overline{\mathrm{r}})$ are $x$, $y$ and $z$ respectively, then the value of $2 x+y+z$ is
Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ If $\bar{c}$ is a vector such that $\bar{a} \cdot \bar{c}=|\bar{c}|$, $|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\bar{c}$ is $60^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is
If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then $\overline{\mathrm{b}}$ is
If the area of the parallelogram with $\bar{a}$ and $\bar{b}$ as two adjacent sides is 15 square units, then the area (in square units) of the parallelogram, having $3 \bar{a}+2 \bar{b}$ and $\bar{a}+3 \bar{b}$ as two adjacent sides, is
If $\bar{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}$, then the angle between the vectors $(2 \bar{a}+\bar{b})$ and $(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})$ is
If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors and $\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$, then $2 \overline{\mathrm{a}} \cdot \overline{\mathrm{p}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{q}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{r}}=$
The incenter of the triangle ABC , whose vertices are $\mathrm{A}(0,2,1), \mathrm{B}(-2,0,0)$ and $\mathrm{C}(-2,0,2)$ is
Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. Let $\overline{\mathrm{c}}$ be a vector such that $|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=3$ and $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=3$ and the angle between $\bar{c}$ and $\bar{a} \times \bar{b}$ is $30^{\circ}$, then $\bar{a} \cdot \bar{c}$ is equal to
Let $\quad \overline{\mathrm{a}}=\alpha \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{b}}=3 \hat{\mathrm{i}}-\beta \hat{j}+4 \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$, where $\alpha, \beta \in \mathbb{R}$, be three vectors. If the projection of $\overline{\mathrm{a}}$ on $\overline{\mathrm{c}}$ is $\frac{10}{3}$ and $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=-6 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$, then the value of $2 \alpha+\beta$ is
Let $\bar{p}$ and $\bar{q}$ be the position vectors of $P$ and $Q$ respectively, with respect to $O$ and $|\vec{p}|=p,|\vec{q}|=q$. The points $R$ and $S$ divide PQ internally and externally in the ratio $2: 3$ respectively. If OR and $O S$ are perpendiculars, then
The value of a for which the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum is
The number of distinct real values of $\lambda$, for which the vectors $-\lambda^2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^2 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^2 \hat{k}$ are coplanar, is
Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ be such that $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{0}$. Let $\mathrm{P}_1$ and $\mathrm{P}_2$ be the planes determined by the pair of vectors $\bar{a}, \bar{b}$ and $\bar{c}, \bar{d}$ respectively, then the angle between $P_1$ and $P_2$ is
Let $\bar{a}, \bar{b}$ and $\overline{\mathrm{c}}$ be three vectors having magnitude 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is
The vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are not perpendicular and $\overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ are two vectors satisfying $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{b}} \times \overline{\mathrm{d}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}=0$, then the vector $\overline{\mathrm{d}}$ is equal to
If $\overline{\mathrm{a}}=\frac{1}{\sqrt{10}}(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}), \overline{\mathrm{b}}=\frac{1}{5}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$, then the value of $(2 \bar{a}-\bar{b}) \cdot\{(\bar{a} \times \bar{b}) \times(\bar{a}+2 \bar{b})\}$ is
If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k} \quad$ and $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ are non-zero non-coplanar vectors and $m$ is non-zero scalar such that $[\mathrm{m} \overline{\mathrm{a}}+\overline{\mathrm{b}} \quad \mathrm{m} \overline{\mathrm{b}}+\overline{\mathrm{c}} \mathrm{m} \overline{\mathrm{c}}+\overline{\mathrm{a}}]=28[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$, then the value of $m$ is equal to
If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median through $A$ is
Let $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$, is
The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$, is
If $|\bar{a}|=\sqrt{27},|\bar{b}|=7$ and $|\bar{a} \times \bar{b}|=35$, then $\bar{a} \cdot \bar{b}$ is equal to
If $\mathrm{A} \equiv(1,-1,0), \mathrm{B} \equiv(0,1,-1)$ and $\mathrm{C} \equiv(-1,0,1)$, then the unit vector $\overline{\mathrm{d}}$ such that $\overline{\mathrm{a}}$ and $\overline{\mathrm{d}}$ are perpendiculars and $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar is
Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is equal to
Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. If $\overline{\mathrm{c}}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is equal to
Let $\bar{a}, \bar{b}, \bar{c}$ be three non-coplanar vectors and $\overline{\mathrm{p}}, \overline{\mathrm{q}}, \overline{\mathrm{r}}$ defined by the relations
$$\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}$$
then the value of the expression $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \cdot \overline{\mathrm{p}}+(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot \overline{\mathrm{q}}+(\overline{\mathrm{c}}+\overline{\mathrm{a}}) \cdot \overline{\mathrm{r}}$ is equal to
The unit vector which is orthogonal to the vector $5 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is
Let $\overline{\mathrm{A}}=2 \hat{\mathrm{i}}+\hat{\mathrm{k}}, \overline{\mathrm{B}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{C}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$. If a vector $\bar{R}$ satisfies $\bar{R} \times \bar{B}=\bar{C} \times \bar{B}$ and $\bar{R} \cdot \overline{\mathrm{~A}}=0$, then $\overline{\mathrm{R}}$ is given by
If C is a given non-zero scalar and $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$ are given non-zero vectors such that $\overline{\mathrm{A}}$ is perpendicular to $\overline{\mathrm{B}}$. If vector $\overline{\mathrm{X}}$ is such that $\overline{\mathrm{A}} \cdot \overline{\mathrm{X}}=\mathrm{C}$ and $\overline{\mathrm{A}} \times \overline{\mathrm{X}}=\overline{\mathrm{B}}$ then $\overline{\mathrm{X}}$ is given by
If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\bar{b}=\hat{i} \times(\bar{a} \times \hat{i})+\hat{j} \times(\bar{a} \times \hat{j})+\hat{k} \times(\bar{a} \times \hat{k})$ then $|\bar{b}|$ is
Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. Let $\overline{\mathrm{c}}$ be a vector such that $|\bar{c}-\bar{a}|=3$ and $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=3$ and the angle between $\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is $30^{\circ}$, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$ is equal to
The scalar $\overline{\mathrm{a}} \cdot[(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})]$ equals
The volume of parallelopiped formed by vectors $\hat{i}+m \hat{j}+\hat{k}, \hat{j}+m \hat{k}$ and $m \hat{i}+\hat{k}$ becomes minimum when $m$ is
If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{mi}+\mathrm{j}+\mathrm{nk}$ are mutually perpendicular, then $(\mathrm{m}, \mathrm{n})$ is
If $\bar{a}=(2 \hat{i}+2 \hat{j}+3 \hat{k}), \vec{b}=(-\hat{i}+2 \hat{j}+\hat{k}) \quad$ and $\bar{c}=(3 \hat{i}+\hat{j})$ such that $(\bar{a}+\lambda \bar{b})$ is perpendicular to $\bar{c}$, then the value of $\lambda$ is
If $x_0$ is the point of local minima of $f(x)=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ where $\overline{\mathrm{a}}=x \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$, $\overline{\mathrm{b}}=-2 \hat{\mathrm{i}}+x \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{c}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$, then value of $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ at $x=x_0$ is
$\hat{a}, \hat{b}$, and $\hat{c}$ are three unit vectors such that $\hat{a} \times(\hat{b} \times \hat{c})=\frac{\sqrt{3}}{2}(\hat{b}+\hat{c})$. If $\dot{b}$ is not parallel to $\hat{c}$, then the angle between $\hat{a}$ and $\hat{b}$ is
For all real $x$, the vectors $C x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{C} x \hat{\mathrm{k}}$ make an obtuse angle with each other, then the value of C can be in
Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$$ and the angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{2 \pi}{3}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|=$$
If $$|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=5$$ and each of the angles between the vectors $$\bar{a}$$ and $$\bar{b}, \bar{b}$$ and $$\bar{c}$$, $$\bar{c}$$ and $$\bar{a}$$ is $$60^{\circ}$$, then the value of $$|\bar{a}+\bar{b}+\bar{c}|$$ is
Let $$\overline{\mathrm{u}}, \overline{\mathrm{v}}$$ and $$\overline{\mathrm{w}}$$ be the vectors such that $$|\overline{\mathrm{u}}|=1; |\bar{v}|=2 ;|\bar{w}|=3$$. If the projection of $$\bar{v}$$ along $$\bar{u}$$ is equal to that of $$\overline{\mathrm{w}}$$ along $$\overline{\mathrm{u}}$$ and $$\overline{\mathrm{v}}, \overline{\mathrm{w}}$$ are perpendicular to each other, then $$|\bar{u}-\bar{v}+\bar{w}|$$ is equal to
Let $$\bar{a}=\hat{i}+2 \hat{j}-\hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}-\hat{k}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0$$, then $$\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}$$ is
If $$|\vec{a}|=\sqrt{3} ;|\vec{b}|=5 ; \bar{b} \cdot \bar{c}=10$$, angle between $$\overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ is $$\frac{\pi}{3}, \overline{\mathrm{a}}$$ is perpendicular to $$\overline{\mathrm{b}} \times \overline{\mathrm{c}}$$. Then the value of $$|\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|$$ is
If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors such that $$|\bar{a}+\bar{b}+\bar{c}|=1, \overline{\mathrm{c}}=\lambda(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$$ and $$|\overline{\mathrm{a}}|=\frac{1}{\sqrt{3}},|\overline{\mathrm{b}}|=\frac{1}{\sqrt{2}},|\overline{\mathrm{c}}|=\frac{1}{\sqrt{6}}$$, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
Let $$\bar{a}, \bar{b}, \bar{c}$$ be three vectors such that $$|\bar{a}|=\sqrt{3}, |\bar{b}|=5, \bar{b} \cdot \bar{c}=10$$ and the angle between $$\bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{3}$$. If $$\bar{a}$$ is perpendicular to the vector $$\bar{b} \times \bar{c}$$, then $$|\bar{a} \times(\bar{b} \times \bar{c})|$$ is equal to
If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are unit vectors and $$\theta$$ is angle between $$\overline{\mathrm{a}}$$ and $$\bar{c}$$ and $$\bar{a}+2 \bar{b}+2 \bar{c}=\overline{0}$$, then $$|\bar{a} \times \bar{c}|=$$
If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors with magnitudes $$\sqrt{3}$$, 1, 2 respectively, such that $$\bar{a} \times(\bar{a} \times \bar{c})+3 \bar{b}=\overline{0}$$, if $$\theta$$ is the angle between $$\bar{a}$$ and $$\bar{c}$$, then $$\sec ^2 \theta$$ is
If the vectors $$p \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+q \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+r \hat{\mathbf{k}}(p \neq q \neq r \neq 1)$$ are coplanar, then the value of $$p q r-(p+q+r)$$ is
If $$\mathbf{a}=\frac{1}{\sqrt{10}}(3 \hat{\mathbf{i}}+\hat{\mathbf{k}}), \mathbf{b}=\frac{1}{7}(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$, then the value of $$(2 \mathbf{a}-\mathbf{b}) \cdot[(\mathbf{a} \times \mathbf{b}) \times(\mathbf{a}+2 \mathbf{b})]$$ is
$$\mathbf{a}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{c}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$$ are three vectors. For a vector $$\mathbf{r}$$ with $$\mathbf{r} \times \mathbf{a}=\mathbf{b}$$ and $$\mathbf{r} \cdot \mathbf{c}=3,|\mathbf{r}|$$ is
If $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ are non-coplanar unit vectors such that $$\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\frac{\mathbf{b}+\mathbf{c}}{\sqrt{2}}$$, then the angle between $$\mathbf{a}$$ and $$\mathbf{b}$$ is
The scalar product of vectors $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and a unit vector along the sum of vectors $$\bar{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\bar{c}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}$$ is one, then the value of $$\lambda$$ is
If $$\hat{\mathrm{a}}$$ and $$\hat{\mathrm{b}}$$ are unit vectors and $$\overline{\mathrm{c}}=\hat{\mathrm{b}}-(\hat{\mathrm{a}} \times \overline{\mathrm{c}})$$, then minimum value of $$[\hat{a} \hat{b} \bar{c}]$$ is
If $$\bar{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}$$ and $$\bar{b}=\hat{i}-\hat{j}-\hat{k}$$, then the projection of $$\bar{b}$$ in the direction of $$\bar{a}$$ is
A vector $$\bar{a}$$ has components 1 and $$2 p$$ with respect to a rectangular Cartesian system. This system is rotated through a certain angle about origin in the counter clock wise sense. If, with respect to the new system, $$\bar{a}$$ has components 1 and $$(p+1)$$, then
If $$\theta$$ is angle between the vectors $$\bar{a}$$ and $$\bar{b}$$ where $$|\bar{a}|=4,|\bar{b}|=3$$ and $$\theta \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$$, then $$|(\bar{a}-\bar{b}) \times(\bar{a}+\bar{b})|^2+4(\bar{a} \cdot \bar{b})^2$$ has the value
$$A, B, C, D$$ are four points in a plane with position vectors $$\bar{a}, \bar{b}, \bar{c}, \bar{d}$$ respectively such that $$(\bar{a}-\bar{d}) \cdot(\bar{b}-\bar{c})=(\bar{b}-\bar{d}) \cdot(\bar{c}-\bar{a})=0$$. The point $$D$$, then is the ___________ of $$\triangle \mathrm{ABC}$$
Two adjacent of sides parallelogram $$\mathrm{ABCD}$$ are given by $$\overline{\mathrm{AB}}=2 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}$$ and $$\overline{A D}=-\hat{i}+2 \hat{j}+2 \hat{k}$$. The side $$A D$$ is rotated by angle $$\alpha$$ in plane of parallelogram so that $$\mathrm{AD}$$ becomes $$\mathrm{AD}^{\prime}$$. If $$\mathrm{AD}^{\prime}$$ makes a right angle with the side $$A B$$, then the cosine of the angle $$\alpha$$ is given by
The unit vector which is orthogonal to the vector $$3 \hat{i}+2 \hat{j}+6 \hat{k}$$ and coplanar with the vectors $$2 \hat{i}+\hat{j}+\hat{k}$$ and $$\hat{i}+\hat{j}+\hat{k}$$ is
If $$\vec{a}, \vec{b}, \vec{c}$$ are three non-zero vectors, no two of them are collinear, $$\vec{a}+2 \vec{b}$$ is collinear with $$\vec{c}, \vec{b}+3 \vec{c}$$ is collinear with $$\vec{a}$$, then $$\vec{a}+2 \vec{b}$$ is
If
then $$|\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}| \text { is }$$
If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are three vectors, $$|\overline{\mathrm{a}}|=2,|\overline{\mathrm{b}}|=4,|\overline{\mathrm{c}}|=1, |\bar{b} \times \bar{c}|=\sqrt{15}$$ and $$\bar{b}=2 \bar{c}+\lambda \bar{a}$$, then the value of $$\lambda$$ is
Two adjacent sides of a parallelogram $$\mathrm{ABCD}$$ are given by $$\overline{A B}=2 \hat{i}+10 \hat{j}+11 \hat{k}$$ and $$\overline{\mathrm{AD}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$$. The side $$\mathrm{AD}$$ is rotated by an acute angle $$\alpha$$ in the plane of parallelogram so that $$\mathrm{AD}$$ becomes $$\mathrm{AD}^{\prime}$$. If $$\mathrm{AD}^{\prime}$$ makes a right angle with side AB, then the cosine of the angle $$\alpha$$ is given by
If the area of the triangle with vertices $$(1,2,0)$$, $$(1,0,2)$$ and $$(0, x, 1)$$ is $$\sqrt{6}$$ square units, then the value of $x$ is
Let $$\overline{\mathrm{A}}$$ be a vector parallel to line of intersection of planes $$P_1$$ and $$P_2$$ through origin. $$P_1$$ is parallel to the vectors $$2 \hat{j}+3 \hat{k}$$ and $$4 \hat{j}-3 \hat{k}$$ and $$P_2$$ is parallel to $$\hat{j}-\hat{k}$$ and $$3 \hat{i}+3 \hat{j}$$, then the angle between $$\bar{A}$$ and $$2 \hat{i}+\hat{j}-2 \hat{k}$$ is
$$\overline{\mathrm{u}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}$$ are three vectors such that $$|\overline{\mathrm{u}}|=1, |\bar{v}|=2,|\bar{w}|=3$$. If the projection of $$\bar{v}$$ along $$\bar{u}$$ is equal to projection of $$\bar{w}$$ along $$\bar{u}$$ and $$\bar{v}, \bar{w}$$ are perpendicular to each other, then $$|\bar{u}-\bar{v}+\bar{w}|=$$
If $$\bar{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \bar{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}, \bar{c}=2 \hat{i}-\hat{j}+4 \hat{k}$$, then a vector $$\overline{\mathrm{d}}$$ which is parallel to vector $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ and which $$\overline{\mathrm{c}} \cdot \overline{\mathrm{d}}=15$$, is
The unit vector perpendicular to each of the vectors $$\bar{a}+\bar{b}$$ and $$\bar{a}-\bar{b}$$, where $$\bar{a}=\hat{i}+\hat{j}+\hat{k}$$ and $$\overline{\mathrm{b}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$$ is
Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$ and $$\bar{c}$$ be a vector such that $$|\bar{c}-\bar{a}|=4,|(\bar{a} \times \bar{b}) \times \bar{c}|=3$$ and the angle between $$\overline{\mathrm{c}}$$ and $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ is $$\frac{\pi}{6}$$, then $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$$ is equal to
If the area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is $$16 \mathrm{sq}$$. units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides (in sq. units) is
If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}$$ are such that $$\bar{a}+\lambda \bar{b}$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is
If $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+\alpha \hat{\mathrm{j}}+\beta \hat{\mathrm{k}}$$ are linearly dependent vectors and $$|\bar{c}|=\sqrt{3}$$, then the values of $$\alpha$$ and $$\beta$$ are respectively.
If the volume of the parallelopiped is $$158 \mathrm{~cu}$$. units whose coterminus edges are given by the vectors $$\bar{a}=(\hat{i}+\hat{j}+n \hat{k}), \bar{b}=2 \hat{i}+4 \hat{j}-n \hat{k}$$ and $$\bar{c}=\hat{i}+n \hat{j}+3 \hat{k}$$, where $$n \geq 0$$, then the value of $$n$$ is
If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors such that $$\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}}+\overline{\mathrm{c}})+\overline{\mathrm{b}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})+\overline{\mathrm{c}} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})=0 \quad$$ and $$\quad|\overline{\mathrm{a}}|=1$$, $$|\bar{b}|=8$$ and $$|\bar{c}|=4$$, then $$|\bar{a}+\bar{b}+\bar{c}|$$ has the value _________.
Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$(\bar{a} \times \bar{b})$$ and $$\bar{c}$$ is $$\frac{\pi}{6}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is
If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is
Let $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ be three unit vectors such that $$\bar{a} \times(\bar{b} \times \bar{c})=\frac{\sqrt{3}}{2}(\bar{b}+\bar{c})$$. If $$\bar{b}$$ is not parallel to $$\bar{c}$$, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
If $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are two unit vectors such that $$\overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
If $$(\bar{a} \times \bar{b}) \times \bar{c}=-5 \bar{a}+4 \bar{b}$$ and $$\bar{a} \cdot \bar{b}=3$$, then the value of $$\bar{a} \times(\bar{b} \times \bar{c})$$ is
If $$\bar{p}=\hat{i}+\hat{j}+\hat{k}$$ and $$\bar{q}=\hat{i}-2 \hat{j}+\hat{k}$$. Then a vector of magnitude $$5 \sqrt{3}$$ units perpendicular to the vector $$\bar{q}$$ and coplanar with $$\bar{p}$$ and $$\bar{q}$$ is
If $$\bar{a}$$ and $$\bar{b}$$ are two unit vectors such that $$\bar{a}+2 \bar{b}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
If $$\overline{\mathrm{a}}=\mathrm{m} \overline{\mathrm{b}}+\mathrm{nc}$$, where $$\overline{\mathrm{a}}=4 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$$, then $$\mathrm{m}+\mathrm{n}=$$
If the volume of tetrahedron, whose vertices are with position vectors $$\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$$ and $$7 \hat{i}-4 \hat{j}+7 \hat{k}$$ is 11 cubic units, then value of $$\lambda$$ is
Scalar projection of the line segment joining the points $$\mathrm{A}(-2,0,3), \mathrm{B}(1,4,2)$$ on the line whose direction ratios are $$6,-2,3$$ is
If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}$$ are such that $$(\bar{a}+\lambda \bar{b})$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is
The vector projection of $$\overline{\mathrm{AB}}$$ on $$\overline{\mathrm{CD}}$$, where $$A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$$ and $$\mathrm{D} \equiv(7,0,10)$$, is
The vectors are $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|$$ and $$|\bar{c}-\bar{a}|=2 \sqrt{2}$$, angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{4}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is
If $$\bar{a}=\hat{i}+2 \hat{j}+\hat{k}, \bar{b}=\hat{i}-\hat{j}+\hat{k}, \bar{c}=\hat{i}+\hat{j}-\hat{k}$$, then a vector in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\overline{\mathrm{c}}$$ is $$\frac{1}{\sqrt{3}}$$, is
Let $$\bar{a}, \bar{b}, \bar{c}$$ be three non-zero vectors, such that no two of them are collinear and $$(\bar{a} \times \bar{b}) \times \bar{c}=\frac{1}{3}|\bar{b}||\bar{c}| \bar{a}$$. If $$\theta$$ is the angle between the vectors $$\bar{b}$$ and $$\bar{c}$$, then the value of $$\sin \theta$$ is
$$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$$, then vector $$\overline{\mathrm{r}}$$ satisfying $$\overline{\mathrm{a}} \times \overline{\mathrm{r}}=\overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}} \cdot \overline{\mathrm{r}}=3$$ is
The magnitude of the projection of the vector $$2 \hat{i}+\hat{j}+\hat{k}$$ on the vector perpendicular to the plane containing the vectors $$\hat{i}+\hat{j}+\hat{k}$$ and $$\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$$ is
If $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ are any three non-zero vectors, then $$(\bar{a}+2 \bar{b}+\bar{c}) \cdot[(\bar{a}-\bar{b}) \times(\bar{a}-\bar{b}-\bar{c})]=$$
Vectors $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are such that $$|\overline{\mathrm{a}}|=1 ;|\overline{\mathrm{b}}|=4$$ and $$\bar{a} \cdot \bar{b}=2$$. If $$\bar{c}=2 \bar{a} \times \bar{b}-3 \bar{b}$$, then the angle between $$\bar{b}$$ and $$\bar{c}$$ is
Two adjacent sides of a parallelogram are $$2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\hat{i}-2 \hat{j}-3 \hat{k}$$, then the unit vector parallel to its diagonal is
If $$\mathrm{D}, \mathrm{E}$$ and $$\mathrm{F}$$ are the mid-points of the sides $$\mathrm{BC}$$, $$\mathrm{CA}$$ and $$\mathrm{AB}$$ of triangle $$\mathrm{ABC}$$ respectively, then $$\overline{\mathrm{AD}}+\frac{2}{3} \overline{\mathrm{BE}}+\frac{1}{3} \overline{\mathrm{CF}}=$$
If two vertices of a triangle are $$\mathrm{A}(3,1,4)$$ and $$\mathrm{B}(-4,5,-3)$$ and the centroid of the triangle is $$G(-1,2,1)$$, then the third vertex $$C$$ of the triangle is
Let two non-collinear vectors $$\hat{a}$$ and $$\hat{b}$$ form an acute angle. A point $$\mathrm{P}$$ moves, so that at any time $$t$$ the position vector $$\overline{\mathrm{OP}}$$, where $$\mathrm{O}$$ is origin, is given by $$\hat{a} \sin t+\hat{b} \cos t$$, when $$P$$ is farthest from origin $$O$$, let $$M$$ be the length of $$\overline{\mathrm{OP}}$$ and $$\hat{\mathrm{u}}$$ be the unit vector along $$\overline{\mathrm{OP}}$$, then
The distance of the point having position vector $$\hat{i}-2 \hat{j}-6 \hat{k}$$, from the straight line passing through the point $$(2,-3,-4)$$ and parallel to the vector $$6 \hat{i}+3 \hat{j}-4 \hat{k}$$ is units.
The scalar product of the vector $$\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$$ with a unit vector along the sum of the vectors $$2 \hat{i}+4 \hat{j}-5 \hat{k}$$ and $$\lambda \hat{i}+2 \hat{j}+3 \hat{k}$$ is equal to 1 , then value of $$\lambda$$ is
If $$[(\bar{a}+2 \bar{b}+3 \bar{c}) \times(\bar{b}+2 \bar{c}+3 \bar{a})] \cdot(\bar{c}+2 \bar{a}+3 \bar{b})=54$$ then the value of $$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$$ is
The volume of parallelopiped, whose coterminous edges are given by $$\overline{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}, \vec{v}=\hat{i}+\hat{j}+3 \hat{k}, \bar{w}=2 \hat{i}+\hat{j}+\hat{k}$$ is 1 cu. units. If $$\theta$$ is the angle between $$\bar{u}$$ and $$\bar{w}$$, then the value of $$\cos \theta$$ is
If $$\bar{a}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{k}}, \bar{b}=x \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+(1-x) \hat{\boldsymbol{k}}$$ and $$\bar{c}=y \hat{\boldsymbol{i}}+x \hat{\boldsymbol{j}}+(1+x-y) \hat{\boldsymbol{k}}$$, then $$[\bar{a} \bar{b} \bar{c}]$$ depends on
Let $$\bar{a}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\bar{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\bar{c} \cdot \bar{a}=0$$, then $$\bar{c} \cdot \bar{b}$$ is equal to
The magnitude of the projection of the vector $$2 \hat{\mathbf{i}}+ 3\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ on the vector perpendicular to the plane containing the vectors $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$$ is
If $$\bar{a}=\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}, \bar{b}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$$ and $$\bar{c}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}$$ are three vectors then vector $$\bar{r}$$ in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\bar{c}$$ is $$\frac{1}{\sqrt{3}}$$, is given by
The polar co-ordinates of the point, whose Cartesian coordinates are $$(-2 \sqrt{3}, 2)$$, are
For any non-zero vectors $$\bar{a}, \bar{b}, \bar{c}$$, the value of $$\bar{a} \cdot[(\bar{b} \times \bar{c}) \times(\bar{a}+\bar{b}+\bar{c})]$$ is
If $$\bar{a}=3 \hat{i}+\hat{j}-\hat{k}, \bar{b}=2 \hat{i}-\hat{j}+23 \hat{k}$$ and $$\bar{c}=7 \hat{i}-\hat{j}+23 \hat{k}$$, then which of the following is valid.
If the angle between the vectors $$\overline{\mathrm{a}}=2 \lambda^2 \hat{\mathrm{i}}+4 \lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and $$\overline{\mathrm{b}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}$$ is obtuse, then $$\lambda \in$$
If $$\bar{a}+\bar{b}, \bar{b}+\bar{c}, \bar{c}+\bar{a}$$ are coterminus edges of a parallelopiped, then its volume is
$$\vec{a}=4 \hat{i}+13 \hat{j}-18 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$$ and $$\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}$$ are three vectors such that $$\vec{a}=x \vec{b}+y \vec{c}$$, then $$x+y=$$
If $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}, \vec{a} \times \bar{b}=\bar{c}$$ and $$\vec{a} \cdot \vec{b}=1$$, then $$\vec{b}$$
If the vectors $$\vec{a}=2 \hat{i}+p \hat{j}+4 \hat{k}$$ and $$\vec{b}=6 \hat{i}-9 \hat{j}+q \hat{k}$$ are collinear, then $$p$$ and $$q$$ are
If $$|\vec{a}|=4,|\vec{b}|=5$$, then the values of $$k$$ for which $$\vec{a}+k \vec{b}$$ is perpendicular to $$\vec{a}-k \vec{b}$$ are
The vectors $$\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}$$ and $$\overrightarrow{\mathrm{AC}}=5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$ are the sides of a triangle $$\mathrm{ABC}$$. The length of the median through $$\mathrm{A}$$ is
If $$\bar{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \bar{b}=-\hat{i}+2 \hat{j}-4 \hat{k}$$ and $$\bar{c}=\hat{i}+\hat{j}-2 \hat{k}$$, then $$(\bar{a} \times \bar{b}) \cdot(\bar{a} \times \bar{c})=$$
Let $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$$ and $$\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$$. If $$\overline{\mathrm{c}}$$ is a vector such that $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ is $$60^{\circ}$$. Then $$|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=$$
The projection of $$\bar{a}=\hat{i}-2 \hat{j}+\hat{k}$$ on $$\bar{b}=2 \hat{i}-\hat{j}+\hat{k}$$ is
If $$\bar{a}=2 \hat{i}-\hat{j}+\hat{k}, \bar{b}=\hat{i}+2 \hat{j}-3 \hat{k}$$ and $$\bar{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k}$$ are coplanar, then $$\lambda$$ is the root of the equation
If $$\hat{a}$$ is a unit vector such that $$(\bar{x}-\hat{a}) \cdot(\bar{x}+\hat{a})=8$$, then $$|\bar{x}|=$$
Let $$\vec{v}=2 \hat{i}+2 \hat{j}-\hat{k}$$ and $$\bar{w}=\hat{i}+3 \hat{k}$$. If $$\bar{u}$$ is a unit vector, then the maximum value of the scalar triple product $$[\bar{u} \bar{v} \bar{w}]$$ is
If $$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{c}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}$$ and $$\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$$ is perpendicular to $$\overline{\mathrm{c}}$$, then $$\lambda=$$
If $$3 \hat{j}, 4 \hat{k}$$ and $$3 \hat{j}+4 \hat{k}$$ are the position vectors of the vertices $$A, B, C$$ respectively of $$\triangle A B C$$, then the position vector of the point in which the bisector of $$\angle \mathrm{A}$$ meets $$\mathrm{BC}$$ is
If the vectors $$2 \hat{i}-\hat{j}-\hat{k} ; \hat{i}+2 \hat{j}-3 \hat{k}$$ and $$3 \hat{i}+\lambda \hat{j}+5 \hat{k}$$ are coplanar, then the value of $$\lambda$$ is
The vector equation of the line whose Cartesian equations are $$y=2$$ and $$4 x-3 z+5=0$$ is
The position vector of the point of inersection of the medians of a triangle, whose vertices are $$A(1,2,3), B(1,0,3)$$ and $$C(4,1,-3)$$ is
The area of the parallelogram whose diagonals are represented by the vectors $$\bar{a}=3 \hat{i}-\hat{j}-2 \hat{k}$$ and $$\bar{b}=-\hat{i}+3 \hat{j}-3 \hat{k}$$ is
If $$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$$ with $$|\overline{\mathrm{a}}|=3,|\overline{\mathrm{b}}|=5$$ and $$|\overline{\mathrm{c}}|=7$$, then angle between $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ is
If $$|\bar{u}|=2$$ and $$\bar{u}$$ makes angles of $$60^{\circ}$$ and $$120^{\circ}$$ with axes $$\mathrm{OX}$$ and $$\mathrm{OY}$$ in the origin, then $$\bar{u}=$$
If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are mutually perpendicular vectors having magnitudes $$1,2,3$$ respectively, then $$\left[\begin{array}{lll}\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}} & \overline{\mathrm{b}}-\overline{\mathrm{a}} & \overline{\mathrm{c}}\end{array}\right]=$$
If $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{c}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and $$\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$$ is perpendicular to $$\overline{\mathrm{c}}$$, then $$\lambda=$$
If $${\pi \over 2} < \theta < \pi $$ and $$|\overline a | = 5,|\overline b | = 13,|\overline a \times \overline b | = 25$$, then the value of $$\overline a \,.\,\overline b $$ is
If $$|\bar{a} \times \bar{b}|^2+(\bar{a} \cdot \bar{b})^2=144$$ and $$|\bar{a}|=4$$, then $$|\bar{b}|=$$
The distance between parallel lines
$$\begin{aligned} & \bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}-2 \hat{k}) \text { and } \\ & \bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+\hat{j}-2 \hat{k}) \text { is } \end{aligned}$$
The vertices of triangle $$\mathrm{ABC}$$ are $$\mathrm{A} \equiv(3,0,0) ; \mathrm{B} \equiv(0,0,4) ; \mathrm{C} \equiv(0,5,4)$$. Find the position vector of the point in which the bisector of angle A meets B C is
In a quadrilateral PQRS, M and N are mid-points of the sides PQ and RS respectively. If $$\overline {PS} + \overline {QR} = t\overline {MN} $$, then t =
If vectors $$\bar{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$$ and $$\bar{c}=3 \hat{i}+\hat{j}+2 \hat{k}$$ are such that, $$\bar{a}+\lambda \bar{b}$$ is perpendicular to $$\bar{c}$$, then $$\lambda=$$
If $$\bar{a}=3 \hat{i}-5 \hat{j}, \bar{b}=6 \hat{i}+3 \hat{j}$$ are two vectors and $$\bar{c}$$ is a vector such that $$\bar{c}=\bar{a} \times \bar{b}$$, then $$a: b$$ : is
If $$|\bar{a}|=3,|\bar{b}|=4,|\bar{a}-\bar{b}|=5$$, then $$|\bar{a}+\bar{b}|=$$
$$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are vectors such that $$|\overline{\mathrm{a}}|=5,|\overline{\mathrm{b}}|=4,|\overline{\mathrm{c}}|=3$$ and each is perpendicular to the sum of the other two, then $$|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^2=$$
If $$[\bar{a} \bar{b} \bar{c}]=4$$, then the volume (in cubic units) of the parallelopiped with $$\bar{a}+2 \bar{b}, \bar{b}+2 \bar{c}$$ and $$\overline{\mathrm{c}}+2 \overline{\mathrm{a}}$$ as coterminal edges, is
$$\overline{\mathrm{a}}, \overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ are three vectors such that $$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$$ and $$|\overline{\mathrm{a}}|=3,|\overline{\mathrm{b}}|=5,|\overline{\mathrm{c}}|=7$$, then the angle between $$\overline{\mathrm{a}}$$ and $$\bar{b}$$ is
If area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is 20 square units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+\overline{\mathrm{b}}$$ and $$2 \overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides in square units is
If $$\bar{r}=-4 \hat{i}-6 \hat{j}-2 \hat{k}$$ is a linear combination of the vectors $$\bar{a}=-\hat{i}+4 \hat{j}+3 \hat{k}$$ and $$\bar{b}=-8 \hat{i}-\hat{j}+3 \hat{k}$$, then
If the volume of a tetrahedron whose conterminous edges are $$\vec{\mathrm{a}}+\vec{\mathrm{b}}, \vec{\mathrm{b}}+\vec{\mathrm{c}}, \vec{\mathrm{c}}+\vec{\mathrm{a}}$$ is 24 cubic units, then the volume of parallelopiped whose coterminous edges are $$\vec{\mathrm{a}}, \vec{\mathrm{b}}, \vec{\mathrm{c}}$$ is
If $$\overline{\mathrm{e}}_1, \overline{\mathrm{e}}_2$$ and $$\overline{\mathrm{e}}_1+\overline{\mathrm{e}}_2$$ are unit vectors, then the angle between $$\overline{\mathrm{e}}_1$$ and $$\overline{\mathrm{e}}_2$$ is
If $$\overline{\mathrm{a}}, \overline{\mathrm{b}} , \overline{\mathrm{c}}$$ are three vectors which are perpendicular to $$\overline{\mathrm{b}}+\overline{\mathrm{c}}, \overline{\mathrm{c}}+\overline{\mathrm{a}}$$ and $$\overline{\mathrm{a}}+\overline{\mathrm{b}}$$ respectively, such that $$|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=4$$, then $$|\bar{a}+\bar{b}+\bar{c}|=$$
$$(2 \hat{\mathrm{i}}+6 \hat{\mathrm{i}}+27 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\mu \hat{\mathrm{k}})=\overline{0}$$, then $$\lambda$$ and $$\mu$$ are respectively
If $\mathbf{a}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{b}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ and $\mathbf{c}=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}+23 \hat{\mathbf{k}}$ are three vectors, then which of the following statement is true.
$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $p=(2 x+1) a-b$ and $q=(x-2) a+b$ are collinear vectors, then $x=$
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors and $p=\frac{\mathbf{b} \times \mathbf{c}}{[a b c]}, q=\frac{\mathbf{c} \times \mathbf{a}}{[a b c]}, r=\frac{\mathbf{a} \times \mathbf{b}}{[a b c]}$, then $\mathbf{a} \cdot \mathbf{p}+\mathbf{b} \cdot \mathbf{q}+\mathbf{c} \cdot \mathbf{r}=$
Let $$G$$ be the centroid of a $$\triangle A B C$$ and $$\mathrm{O}_{b_\theta}$$ other point in that plane, then $$\mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{CG}=$$
If the volume of the parallelopiped whose conterminus edges are along the vectors $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ is 12, then the volume of the tetrahedron whose conterminus edges are $$\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$$ and $$c+a$$ is
For any non-zero vectors $$\mathbf{a}$$ and $$\mathbf{b}$$,
If the vectors $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+m \hat{\mathbf{k}}$$ are coplanar, then $$m=$$
The angles between the lines $$\mathbf{r}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \text { and } \mathbf{r}=(3 \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda^{\prime}(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}), \lambda, \lambda^{\prime} \in \mathbf{R}$$ is
In a quadrilateral $$ABCD, M$$ and $$N$$ are the mid-points of the sides $$A B$$ and $$C D$$ respectively. If $$\mathbf{A D}+\mathbf{B C}=t \mathbf{M N}$$, then $$t=$$
If $$[\vec{a}\ \vec{b}\ \vec{c}\ ] \neq 0$$, then $$\frac{[\vec{a}\ +\vec{b}\ \vec{b}\ +\vec{c}\ \vec{c}\ +\vec{a}\ ]}{[\vec{b}\ \vec{c}\ \vec{a}\ ]}=$$
If the scalar triple product of the vectors $-3 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ and $7 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ is 272 then $\lambda=\ldots \ldots$
$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $\mathbf{c}=(x-2) \mathbf{a}+\mathbf{b}$ and $\mathbf{d}=(2 x+1) \mathbf{a}-\mathbf{b}$ are collinear vectors, then the value of $x=\ldots \ldots$
For any non zero vector, a, b, c $\mathbf{a} \cdot[(\mathbf{b}+\mathbf{c}) \times(\mathbf{a}+\mathbf{b}+\mathbf{c})]=$ ..........
If $A, B, C$ and $D$ are $(3,7,4),(5,-2,-3),(-4,5,6)$ and $(1,2,3)$ respectively, then the volume of the parallelopiped with $A B, A C$ and $A D$ as the co-terminus edges, is .......... cubic units.
If the vectors $x \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+y \hat{\mathbf{j}}-z \hat{\mathbf{k}}$ are collinear then the value of $\frac{x y^2}{z}$ is equal
Which of the following is not equal to $\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})$ ?
If $\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$ anc $\mathbf{c}+\mathbf{a}$ are coterminous edges of a parallel opiped then its volume is ..........
If $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$ are non-zero, non-coplanar vectors