Vector Algebra · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=2 \hat{i}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ are two vectors, then the angle between the vectors $3 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}$ and $5 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}$ is

MHT CET 2024 16th May Evening Shift
2

If $\overline{\mathrm{a}}$ is perpendicular to $\bar{b}$ and $\bar{c},|\bar{a}|=2$, $|\overline{\mathrm{b}}|=3,|\overline{\mathrm{c}}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{3}$, then $\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]=$

MHT CET 2024 16th May Evening Shift
3

If $\bar{a}=2 \hat{i}-\hat{j}+\hat{k}, \bar{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\bar{c}=4 \hat{i}-2 \hat{j}+\hat{k}$, then the unit vector in the direction of $3 \overline{\mathrm{a}}+\overline{\mathrm{b}}-2 \overline{\mathrm{c}}$ is

MHT CET 2024 16th May Evening Shift
4

If $\bar{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \quad \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\bar{c}=3 \hat{i}+\hat{j}$ are the vectors such that $\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$ is perpendicular to $\bar{c}$, then value of $\lambda$ is

MHT CET 2024 16th May Evening Shift
5

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three vectors such that $\overline{\mathrm{a}} \neq \overline{0}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=2 \overline{\mathrm{a}} \times \overline{\mathrm{c}},|\overline{\mathrm{a}}|=|\overline{\mathrm{c}}|=1,|\overline{\mathrm{~b}}|=4$ and $|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=\sqrt{15}$. If $\overline{\mathrm{b}}-2 \overline{\mathrm{c}}=\lambda \overline{\mathrm{a}}$, then $\lambda$ is

MHT CET 2024 16th May Evening Shift
6

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit coplanar vectors, then the scalar triple product $\left[\begin{array}{lll}2 \overline{\mathrm{a}}-\overline{\mathrm{b}} & 2 \overline{\mathrm{~b}}-\overline{\mathrm{c}} & 2 \overline{\mathrm{c}}-\overline{\mathrm{a}}\end{array}\right]$ has the value

MHT CET 2024 16th May Morning Shift
7

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\bar{a}|=2,|\bar{b}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\bar{c}$ on $\bar{a}$ and $\bar{b}$ is perpendicular to $\bar{c}$, then the value of $|\vec{a}+\bar{b}-\bar{c}|$ is

MHT CET 2024 16th May Morning Shift
8

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\mathrm{c}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\sin \theta$ is

MHT CET 2024 16th May Morning Shift
9

If $\left[\begin{array}{lll}\overline{\mathrm{a}} \times \overline{\mathrm{b}} & \overline{\mathrm{b}} \times \overline{\mathrm{c}} & \overline{\mathrm{c}} \times \overline{\mathrm{a}}\end{array}\right]=\lambda\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]^2$, then $\lambda$ is equal to

MHT CET 2024 16th May Morning Shift
10

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median, through $A$, is

MHT CET 2024 16th May Morning Shift
11

If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $\bar{a}+2 \bar{b}$ and $5 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is

MHT CET 2024 16th May Morning Shift
12

Let $P, Q, R$ and $S$ be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. Then the quadrilateral PQRS must be a

MHT CET 2024 15th May Evening Shift
13

If the points $\mathrm{P}, \mathrm{Q}$ and R are with the position vectors $\hat{i}-2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}+2 \hat{k}$ and $-8 \hat{i}+13 \hat{j}$ respectively, then these points are

MHT CET 2024 15th May Evening Shift
14

One side and one diagonal of a parallelogram are represented by $3 \hat{i}+\hat{j}-\hat{k}$ and $2 \hat{i}+\hat{j}-2 \hat{k}$ respectively, then the area of parallelogram in square units is

MHT CET 2024 15th May Evening Shift
15

If the vector $\overline{\mathrm{c}}$ lies in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, where $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=x \hat{\mathrm{i}}-(2-x) \hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the value of $x$ is

MHT CET 2024 15th May Evening Shift
16

Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\bar{v}$ in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is given by

MHT CET 2024 15th May Morning Shift
17

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are two unit vectors such that $5 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}$ and $\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is

MHT CET 2024 15th May Morning Shift
18

Let $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. If $\bar{c}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$ is equal to

MHT CET 2024 15th May Morning Shift
19

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{pi}+\hat{\mathrm{j}}+\mathrm{q} \hat{\mathrm{k}}$ are mutually orthogonal, then $(p, q)$ is equal to

MHT CET 2024 15th May Morning Shift
20

If $\bar{u}, \bar{v}$ and $\bar{w}$ are three non-coplanar vectors, then $(\bar{u}+\bar{v}-\bar{w}) \cdot[(\bar{u}-\bar{v}) \times(\bar{v}-\bar{w})]$ is equal to

MHT CET 2024 15th May Morning Shift
21

Let $\overline{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \overline{\mathrm{v}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$ and $\overline{\mathrm{w}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$. If $\hat{\mathrm{n}}$ is a unit vector such that $\overline{\mathbf{u}} \cdot \hat{\mathrm{n}}=0$ and $\overline{\mathrm{v}} \cdot \hat{\mathrm{n}}=0$, then $|\overline{\mathrm{w}} \cdot \hat{\mathrm{n}}|$ is equal to

MHT CET 2024 15th May Morning Shift
22

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\sqrt{3}}{2}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})$. If $\bar{b}$ is not parallel to $\bar{c}$, then the angle between $\bar{a}$ and $\bar{b}$ is

MHT CET 2024 11th May Evening Shift
23

If $\hat{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\hat{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \hat{a}-\hat{b}) \cdot[(\hat{a} \times \hat{b}) \times(\hat{a}+2 \hat{b})]$ is

MHT CET 2024 11th May Evening Shift
24

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$, and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of these are collinear. If the vector $\bar{a}+2 \bar{b}$ is collinear with $\bar{c}$ and $\bar{b}+3 \bar{c}$ is collinear with $\overline{\mathrm{a}}$, then $\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}}$ equals

MHT CET 2024 11th May Evening Shift
25

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{(\overline{\mathrm{b}}+\overline{\mathrm{c}})}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\bar{b}$ is

MHT CET 2024 11th May Evening Shift
26

The number of unit vectors perpendicular to $\overline{\mathrm{a}}=(1,1,0)$ and $\overline{\mathrm{b}}=(0,1,1)$ is

MHT CET 2024 11th May Evening Shift
27

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+\mu \hat{\mathrm{k}}$ are mutually orthogonal, then $(\lambda, \mu) \equiv$

MHT CET 2024 11th May Evening Shift
28

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\overline{\mathrm{c}}| \overline{\mathrm{a}}$. If ' $\theta$ ' is the angle between the vectors $\bar{b}$ and $\bar{c}$, then value of $\sin \theta$ is

MHT CET 2024 11th May Morning Shift
29

If $\bar{x}=\frac{\bar{b} \times \bar{c}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \bar{y}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ and $\overline{\mathrm{z}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ where $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors, then value of $\bar{x} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\bar{y} \cdot(\overline{\mathrm{~b}}+\overline{\mathrm{c}})+\overline{\mathrm{z}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})$ is

MHT CET 2024 11th May Morning Shift
30

If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $5 \bar{a}+4 \bar{b}$ and $\bar{a}-2 \bar{b}$ are perpendicular to each other, then the between $\bar{a}$ and $\bar{b}$ is

MHT CET 2024 11th May Morning Shift
31

Let two non-collinear unit vectors $\hat{\mathrm{a}}$ and $\hat{\mathrm{b}}$ form an acute angle. A point P moves, so that at any time $t$ the position vector $\overline{O P}$, where $O$ is the origin, is given by $\hat{a} \cos t+\hat{b} \sin t$. When $P$ is farthest from origin O , let M be the length of $\overline{\mathrm{OP}}$ and $\hat{\mathrm{u}}$ be the unit vector along $\overline{\mathrm{OP}}$, then

MHT CET 2024 10th May Evening Shift
32

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are mutually perpendicular vectors having magnitudes $1,2,3$ respectively, then the value of $\left[\begin{array}{lll}\bar{a}+\bar{b}+\bar{c} & \bar{b}-\bar{a} & \bar{c}\end{array}\right]$ is

MHT CET 2024 10th May Evening Shift
33

The vector of magnitude 6 units and perpendicular to vectors $2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ is

MHT CET 2024 10th May Evening Shift
34

If $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$ is

MHT CET 2024 10th May Evening Shift
35

$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=4 \hat{\mathrm{i}}-2 \hat{j}+3 \hat{k}, \overline{\mathrm{c}}=\hat{i}-2 \hat{j}+\hat{k}$, then $a$ vector of magnitude 6 units, which is parallel to the vector $2 \bar{a}-\bar{b}+3 c$, is

MHT CET 2024 10th May Evening Shift
36

If $\overline{\mathrm{a}}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\bar{c}=3 \hat{i}+\hat{j}$ such that $\overline{\mathrm{b}}+\lambda \overline{\mathrm{a}}$ is perpendicular to $\overline{\mathrm{c}}$, then $\lambda$ is

MHT CET 2024 10th May Evening Shift
37

If $\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{k}}, \overline{\mathrm{b}}=x \hat{\mathrm{i}}+\hat{\mathrm{j}}+(1-x) \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{c}}=y \hat{\mathrm{i}}+x \hat{\mathrm{j}}+(1+x-y) \hat{\mathrm{k}}$ then $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ depends on

MHT CET 2024 10th May Morning Shift
38

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three vectors having magnitudes 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is

MHT CET 2024 10th May Morning Shift
39

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ are unit vectors inclined at $\frac{\pi}{3}$ with each other and $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then the value of $5[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$

MHT CET 2024 10th May Morning Shift
40

If $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=3$ and $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are mutually perpendicular vectors, then the area of the triangle whose vertices are $0, a+2 b, a-2 b$ is

MHT CET 2024 10th May Morning Shift
41

Let $\bar{A}, \bar{B}, \bar{C}$ be vectors of lengths 3 units, 4 units, 5 units respectively. let $\bar{A}$ be perpendicular to $\overline{\mathrm{B}}+\overline{\mathrm{C}}, \overline{\mathrm{B}}$ be perpendicular to $\overline{\mathrm{C}}+\overline{\mathrm{A}}$ and $\overline{\mathrm{C}}$ be perpendicular to $\bar{A}+\bar{B}$, then the length of vector $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$ is

MHT CET 2024 10th May Morning Shift
42

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\overline{\mathrm{c}}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\operatorname{cosec} \theta$ is

MHT CET 2024 10th May Morning Shift
43

Let $\quad \overline{\mathrm{a}}=\alpha \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \quad \overline{\mathrm{b}}=3 \hat{\mathrm{i}}-\beta \hat{\mathrm{j}}+4 \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$, where $\alpha, \beta \in \mathbb{R}$, be three vectors. If the projection at $\overline{\mathrm{a}}$ on $\overline{\mathrm{c}}$ is $\frac{10}{3}$ and $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=-6 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$, then the value of $\alpha^2+\beta^2-\alpha \beta$ is equal to

MHT CET 2024 9th May Evening Shift
44

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be vectors of magnitude 2,3 and 4 respectively. If $\bar{a}$ is perpendicular to $(\bar{b}+\bar{c}), \bar{b}$ is perpendicular to $(\bar{c}+\bar{a})$ and $\bar{c}$ is perpendicular to $(\bar{a}+\bar{b})$, then the magnitude of $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$ is equal to

MHT CET 2024 9th May Evening Shift
45

The vector $\bar{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and bisects the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$. Then which one of the following gives possible values of $\alpha$ and $\beta$ ?

MHT CET 2024 9th May Evening Shift
46

A unit vector coplanar with $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ and perpendicular to $\hat{i}+\hat{j}-\hat{k}$ is

MHT CET 2024 9th May Evening Shift
47

Let $\bar{a}=3 \hat{i}-\alpha \hat{j}+\hat{k}$ and $\bar{b}=\hat{i}+\alpha \hat{j}+3 \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, is $8 \sqrt{3}$ sq. units, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is equal to

MHT CET 2024 9th May Evening Shift
48

Let $\hat{a}$ and $\hat{b}$ be two unit vectors. If the vectors $\overline{\mathrm{c}}=\hat{\mathrm{a}}+2 \hat{\mathrm{~b}}$ and $\overline{\mathrm{d}}=5 \hat{\mathrm{a}}+4 \hat{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\hat{a}$ and $\hat{b}$ is

MHT CET 2024 9th May Evening Shift
49

If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.

MHT CET 2024 9th May Morning Shift
50

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]$ equals

MHT CET 2024 9th May Morning Shift
51

Suppose that $\bar{p}, \bar{q}$ and $\overline{\mathrm{r}}$ are three non-coplanar vectors in $\mathbb{R}^3$. Let the components of a vector $\overline{\mathrm{s}}$ along $\overline{\mathrm{p}}, \overline{\mathrm{q}}$ and $\overline{\mathrm{r}}$ be 4,3 and 5 respectively. If the components of this vector $\overline{\mathrm{s}}$ along $(-\overline{\mathrm{p}}+\overline{\mathrm{q}}+\overline{\mathrm{r}}),(\overline{\mathrm{p}}-\overline{\mathrm{q}}+\overline{\mathrm{r}})$ and $(-\overline{\mathrm{p}}-\overline{\mathrm{q}}+\overline{\mathrm{r}})$ are $x$, $y$ and $z$ respectively, then the value of $2 x+y+z$ is

MHT CET 2024 9th May Morning Shift
52

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ If $\bar{c}$ is a vector such that $\bar{a} \cdot \bar{c}=|\bar{c}|$, $|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\bar{c}$ is $60^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is

MHT CET 2024 9th May Morning Shift
53

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then $\overline{\mathrm{b}}$ is

MHT CET 2024 9th May Morning Shift
54

If the area of the parallelogram with $\bar{a}$ and $\bar{b}$ as two adjacent sides is 15 square units, then the area (in square units) of the parallelogram, having $3 \bar{a}+2 \bar{b}$ and $\bar{a}+3 \bar{b}$ as two adjacent sides, is

MHT CET 2024 9th May Morning Shift
55

If $\bar{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}$, then the angle between the vectors $(2 \bar{a}+\bar{b})$ and $(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})$ is

MHT CET 2024 4th May Evening Shift
56

If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors and $\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$, then $2 \overline{\mathrm{a}} \cdot \overline{\mathrm{p}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{q}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{r}}=$

MHT CET 2024 4th May Evening Shift
57

The incenter of the triangle ABC , whose vertices are $\mathrm{A}(0,2,1), \mathrm{B}(-2,0,0)$ and $\mathrm{C}(-2,0,2)$ is

MHT CET 2024 4th May Evening Shift
58

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. Let $\overline{\mathrm{c}}$ be a vector such that $|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=3$ and $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=3$ and the angle between $\bar{c}$ and $\bar{a} \times \bar{b}$ is $30^{\circ}$, then $\bar{a} \cdot \bar{c}$ is equal to

MHT CET 2024 4th May Evening Shift
59

Let $\quad \overline{\mathrm{a}}=\alpha \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{b}}=3 \hat{\mathrm{i}}-\beta \hat{j}+4 \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$, where $\alpha, \beta \in \mathbb{R}$, be three vectors. If the projection of $\overline{\mathrm{a}}$ on $\overline{\mathrm{c}}$ is $\frac{10}{3}$ and $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=-6 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$, then the value of $2 \alpha+\beta$ is

MHT CET 2024 4th May Morning Shift
60

Let $\bar{p}$ and $\bar{q}$ be the position vectors of $P$ and $Q$ respectively, with respect to $O$ and $|\vec{p}|=p,|\vec{q}|=q$. The points $R$ and $S$ divide PQ internally and externally in the ratio $2: 3$ respectively. If OR and $O S$ are perpendiculars, then

MHT CET 2024 4th May Morning Shift
61

The value of a for which the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum is

MHT CET 2024 4th May Morning Shift
62

The number of distinct real values of $\lambda$, for which the vectors $-\lambda^2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^2 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^2 \hat{k}$ are coplanar, is

MHT CET 2024 4th May Morning Shift
63

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ be such that $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{0}$. Let $\mathrm{P}_1$ and $\mathrm{P}_2$ be the planes determined by the pair of vectors $\bar{a}, \bar{b}$ and $\bar{c}, \bar{d}$ respectively, then the angle between $P_1$ and $P_2$ is

MHT CET 2024 4th May Morning Shift
64

Let $\bar{a}, \bar{b}$ and $\overline{\mathrm{c}}$ be three vectors having magnitude 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is

MHT CET 2024 4th May Morning Shift
65

The vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are not perpendicular and $\overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ are two vectors satisfying $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{b}} \times \overline{\mathrm{d}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}=0$, then the vector $\overline{\mathrm{d}}$ is equal to

MHT CET 2024 3rd May Evening Shift
66

If $\overline{\mathrm{a}}=\frac{1}{\sqrt{10}}(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}), \overline{\mathrm{b}}=\frac{1}{5}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$, then the value of $(2 \bar{a}-\bar{b}) \cdot\{(\bar{a} \times \bar{b}) \times(\bar{a}+2 \bar{b})\}$ is

MHT CET 2024 3rd May Evening Shift
67

If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k} \quad$ and $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ are non-zero non-coplanar vectors and $m$ is non-zero scalar such that $[\mathrm{m} \overline{\mathrm{a}}+\overline{\mathrm{b}} \quad \mathrm{m} \overline{\mathrm{b}}+\overline{\mathrm{c}} \mathrm{m} \overline{\mathrm{c}}+\overline{\mathrm{a}}]=28[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$, then the value of $m$ is equal to

MHT CET 2024 3rd May Evening Shift
68

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median through $A$ is

MHT CET 2024 3rd May Evening Shift
69

Let $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$, is

MHT CET 2024 3rd May Evening Shift
70

The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$, is

MHT CET 2024 3rd May Morning Shift
71

If $|\bar{a}|=\sqrt{27},|\bar{b}|=7$ and $|\bar{a} \times \bar{b}|=35$, then $\bar{a} \cdot \bar{b}$ is equal to

MHT CET 2024 3rd May Morning Shift
72

If $\mathrm{A} \equiv(1,-1,0), \mathrm{B} \equiv(0,1,-1)$ and $\mathrm{C} \equiv(-1,0,1)$, then the unit vector $\overline{\mathrm{d}}$ such that $\overline{\mathrm{a}}$ and $\overline{\mathrm{d}}$ are perpendiculars and $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar is

MHT CET 2024 3rd May Morning Shift
73

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is equal to

MHT CET 2024 3rd May Morning Shift
74

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. If $\overline{\mathrm{c}}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is equal to

MHT CET 2024 3rd May Morning Shift
75

Let $\bar{a}, \bar{b}, \bar{c}$ be three non-coplanar vectors and $\overline{\mathrm{p}}, \overline{\mathrm{q}}, \overline{\mathrm{r}}$ defined by the relations

$$\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}$$

then the value of the expression $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \cdot \overline{\mathrm{p}}+(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot \overline{\mathrm{q}}+(\overline{\mathrm{c}}+\overline{\mathrm{a}}) \cdot \overline{\mathrm{r}}$ is equal to

MHT CET 2024 3rd May Morning Shift
76

The unit vector which is orthogonal to the vector $5 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is

MHT CET 2024 2nd May Evening Shift
77

Let $\overline{\mathrm{A}}=2 \hat{\mathrm{i}}+\hat{\mathrm{k}}, \overline{\mathrm{B}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{C}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$. If a vector $\bar{R}$ satisfies $\bar{R} \times \bar{B}=\bar{C} \times \bar{B}$ and $\bar{R} \cdot \overline{\mathrm{~A}}=0$, then $\overline{\mathrm{R}}$ is given by

MHT CET 2024 2nd May Evening Shift
78

If C is a given non-zero scalar and $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$ are given non-zero vectors such that $\overline{\mathrm{A}}$ is perpendicular to $\overline{\mathrm{B}}$. If vector $\overline{\mathrm{X}}$ is such that $\overline{\mathrm{A}} \cdot \overline{\mathrm{X}}=\mathrm{C}$ and $\overline{\mathrm{A}} \times \overline{\mathrm{X}}=\overline{\mathrm{B}}$ then $\overline{\mathrm{X}}$ is given by

MHT CET 2024 2nd May Evening Shift
79

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\bar{b}=\hat{i} \times(\bar{a} \times \hat{i})+\hat{j} \times(\bar{a} \times \hat{j})+\hat{k} \times(\bar{a} \times \hat{k})$ then $|\bar{b}|$ is

MHT CET 2024 2nd May Evening Shift
80

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. Let $\overline{\mathrm{c}}$ be a vector such that $|\bar{c}-\bar{a}|=3$ and $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=3$ and the angle between $\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is $30^{\circ}$, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$ is equal to

MHT CET 2024 2nd May Morning Shift
81

The scalar $\overline{\mathrm{a}} \cdot[(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})]$ equals

MHT CET 2024 2nd May Morning Shift
82

The volume of parallelopiped formed by vectors $\hat{i}+m \hat{j}+\hat{k}, \hat{j}+m \hat{k}$ and $m \hat{i}+\hat{k}$ becomes minimum when $m$ is

MHT CET 2024 2nd May Morning Shift
83

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{mi}+\mathrm{j}+\mathrm{nk}$ are mutually perpendicular, then $(\mathrm{m}, \mathrm{n})$ is

MHT CET 2024 2nd May Morning Shift
84

If $\bar{a}=(2 \hat{i}+2 \hat{j}+3 \hat{k}), \vec{b}=(-\hat{i}+2 \hat{j}+\hat{k}) \quad$ and $\bar{c}=(3 \hat{i}+\hat{j})$ such that $(\bar{a}+\lambda \bar{b})$ is perpendicular to $\bar{c}$, then the value of $\lambda$ is

MHT CET 2024 2nd May Morning Shift
85

If $x_0$ is the point of local minima of $f(x)=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ where $\overline{\mathrm{a}}=x \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$, $\overline{\mathrm{b}}=-2 \hat{\mathrm{i}}+x \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{c}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$, then value of $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ at $x=x_0$ is

MHT CET 2024 2nd May Morning Shift
86

$\hat{a}, \hat{b}$, and $\hat{c}$ are three unit vectors such that $\hat{a} \times(\hat{b} \times \hat{c})=\frac{\sqrt{3}}{2}(\hat{b}+\hat{c})$. If $\dot{b}$ is not parallel to $\hat{c}$, then the angle between $\hat{a}$ and $\hat{b}$ is

MHT CET 2024 2nd May Morning Shift
87

For all real $x$, the vectors $C x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{C} x \hat{\mathrm{k}}$ make an obtuse angle with each other, then the value of C can be in

MHT CET 2024 2nd May Morning Shift
88

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$$ and the angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{2 \pi}{3}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|=$$

MHT CET 2023 14th May Evening Shift
89

If $$|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=5$$ and each of the angles between the vectors $$\bar{a}$$ and $$\bar{b}, \bar{b}$$ and $$\bar{c}$$, $$\bar{c}$$ and $$\bar{a}$$ is $$60^{\circ}$$, then the value of $$|\bar{a}+\bar{b}+\bar{c}|$$ is

MHT CET 2023 14th May Evening Shift
90

Let $$\overline{\mathrm{u}}, \overline{\mathrm{v}}$$ and $$\overline{\mathrm{w}}$$ be the vectors such that $$|\overline{\mathrm{u}}|=1; |\bar{v}|=2 ;|\bar{w}|=3$$. If the projection of $$\bar{v}$$ along $$\bar{u}$$ is equal to that of $$\overline{\mathrm{w}}$$ along $$\overline{\mathrm{u}}$$ and $$\overline{\mathrm{v}}, \overline{\mathrm{w}}$$ are perpendicular to each other, then $$|\bar{u}-\bar{v}+\bar{w}|$$ is equal to

MHT CET 2023 14th May Evening Shift
91

Let $$\bar{a}=\hat{i}+2 \hat{j}-\hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}-\hat{k}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0$$, then $$\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}$$ is

MHT CET 2023 14th May Evening Shift
92

If $$|\vec{a}|=\sqrt{3} ;|\vec{b}|=5 ; \bar{b} \cdot \bar{c}=10$$, angle between $$\overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ is $$\frac{\pi}{3}, \overline{\mathrm{a}}$$ is perpendicular to $$\overline{\mathrm{b}} \times \overline{\mathrm{c}}$$. Then the value of $$|\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|$$ is

MHT CET 2023 14th May Evening Shift
93

If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors such that $$|\bar{a}+\bar{b}+\bar{c}|=1, \overline{\mathrm{c}}=\lambda(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$$ and $$|\overline{\mathrm{a}}|=\frac{1}{\sqrt{3}},|\overline{\mathrm{b}}|=\frac{1}{\sqrt{2}},|\overline{\mathrm{c}}|=\frac{1}{\sqrt{6}}$$, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is

MHT CET 2023 14th May Morning Shift
94

Let $$\bar{a}, \bar{b}, \bar{c}$$ be three vectors such that $$|\bar{a}|=\sqrt{3}, |\bar{b}|=5, \bar{b} \cdot \bar{c}=10$$ and the angle between $$\bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{3}$$. If $$\bar{a}$$ is perpendicular to the vector $$\bar{b} \times \bar{c}$$, then $$|\bar{a} \times(\bar{b} \times \bar{c})|$$ is equal to

MHT CET 2023 14th May Morning Shift
95

If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are unit vectors and $$\theta$$ is angle between $$\overline{\mathrm{a}}$$ and $$\bar{c}$$ and $$\bar{a}+2 \bar{b}+2 \bar{c}=\overline{0}$$, then $$|\bar{a} \times \bar{c}|=$$

MHT CET 2023 14th May Morning Shift
96

If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors with magnitudes $$\sqrt{3}$$, 1, 2 respectively, such that $$\bar{a} \times(\bar{a} \times \bar{c})+3 \bar{b}=\overline{0}$$, if $$\theta$$ is the angle between $$\bar{a}$$ and $$\bar{c}$$, then $$\sec ^2 \theta$$ is

MHT CET 2023 14th May Morning Shift
97

If the vectors $$p \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+q \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+r \hat{\mathbf{k}}(p \neq q \neq r \neq 1)$$ are coplanar, then the value of $$p q r-(p+q+r)$$ is

MHT CET 2023 13th May Evening Shift
98

If $$\mathbf{a}=\frac{1}{\sqrt{10}}(3 \hat{\mathbf{i}}+\hat{\mathbf{k}}), \mathbf{b}=\frac{1}{7}(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$, then the value of $$(2 \mathbf{a}-\mathbf{b}) \cdot[(\mathbf{a} \times \mathbf{b}) \times(\mathbf{a}+2 \mathbf{b})]$$ is

MHT CET 2023 13th May Evening Shift
99

$$\mathbf{a}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{c}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$$ are three vectors. For a vector $$\mathbf{r}$$ with $$\mathbf{r} \times \mathbf{a}=\mathbf{b}$$ and $$\mathbf{r} \cdot \mathbf{c}=3,|\mathbf{r}|$$ is

MHT CET 2023 13th May Evening Shift
100

If $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ are non-coplanar unit vectors such that $$\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\frac{\mathbf{b}+\mathbf{c}}{\sqrt{2}}$$, then the angle between $$\mathbf{a}$$ and $$\mathbf{b}$$ is

MHT CET 2023 13th May Evening Shift
101

The scalar product of vectors $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and a unit vector along the sum of vectors $$\bar{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\bar{c}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}$$ is one, then the value of $$\lambda$$ is

MHT CET 2023 13th May Morning Shift
102

If $$\hat{\mathrm{a}}$$ and $$\hat{\mathrm{b}}$$ are unit vectors and $$\overline{\mathrm{c}}=\hat{\mathrm{b}}-(\hat{\mathrm{a}} \times \overline{\mathrm{c}})$$, then minimum value of $$[\hat{a} \hat{b} \bar{c}]$$ is

MHT CET 2023 13th May Morning Shift
103

If $$\bar{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}$$ and $$\bar{b}=\hat{i}-\hat{j}-\hat{k}$$, then the projection of $$\bar{b}$$ in the direction of $$\bar{a}$$ is

MHT CET 2023 13th May Morning Shift
104

A vector $$\bar{a}$$ has components 1 and $$2 p$$ with respect to a rectangular Cartesian system. This system is rotated through a certain angle about origin in the counter clock wise sense. If, with respect to the new system, $$\bar{a}$$ has components 1 and $$(p+1)$$, then

MHT CET 2023 13th May Morning Shift
105

If $$\theta$$ is angle between the vectors $$\bar{a}$$ and $$\bar{b}$$ where $$|\bar{a}|=4,|\bar{b}|=3$$ and $$\theta \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$$, then $$|(\bar{a}-\bar{b}) \times(\bar{a}+\bar{b})|^2+4(\bar{a} \cdot \bar{b})^2$$ has the value

MHT CET 2023 13th May Morning Shift
106

$$A, B, C, D$$ are four points in a plane with position vectors $$\bar{a}, \bar{b}, \bar{c}, \bar{d}$$ respectively such that $$(\bar{a}-\bar{d}) \cdot(\bar{b}-\bar{c})=(\bar{b}-\bar{d}) \cdot(\bar{c}-\bar{a})=0$$. The point $$D$$, then is the ___________ of $$\triangle \mathrm{ABC}$$

MHT CET 2023 12th May Evening Shift
107

Two adjacent of sides parallelogram $$\mathrm{ABCD}$$ are given by $$\overline{\mathrm{AB}}=2 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}$$ and $$\overline{A D}=-\hat{i}+2 \hat{j}+2 \hat{k}$$. The side $$A D$$ is rotated by angle $$\alpha$$ in plane of parallelogram so that $$\mathrm{AD}$$ becomes $$\mathrm{AD}^{\prime}$$. If $$\mathrm{AD}^{\prime}$$ makes a right angle with the side $$A B$$, then the cosine of the angle $$\alpha$$ is given by

MHT CET 2023 12th May Evening Shift
108

The unit vector which is orthogonal to the vector $$3 \hat{i}+2 \hat{j}+6 \hat{k}$$ and coplanar with the vectors $$2 \hat{i}+\hat{j}+\hat{k}$$ and $$\hat{i}+\hat{j}+\hat{k}$$ is

MHT CET 2023 12th May Evening Shift
109

If $$\vec{a}, \vec{b}, \vec{c}$$ are three non-zero vectors, no two of them are collinear, $$\vec{a}+2 \vec{b}$$ is collinear with $$\vec{c}, \vec{b}+3 \vec{c}$$ is collinear with $$\vec{a}$$, then $$\vec{a}+2 \vec{b}$$ is

MHT CET 2023 12th May Evening Shift
110

If

MHT CET 2023 12th May Evening Shift Mathematics - Vector Algebra Question 153 English

then $$|\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}| \text { is }$$

MHT CET 2023 12th May Evening Shift
111

If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are three vectors, $$|\overline{\mathrm{a}}|=2,|\overline{\mathrm{b}}|=4,|\overline{\mathrm{c}}|=1, |\bar{b} \times \bar{c}|=\sqrt{15}$$ and $$\bar{b}=2 \bar{c}+\lambda \bar{a}$$, then the value of $$\lambda$$ is

MHT CET 2023 12th May Morning Shift
112

Two adjacent sides of a parallelogram $$\mathrm{ABCD}$$ are given by $$\overline{A B}=2 \hat{i}+10 \hat{j}+11 \hat{k}$$ and $$\overline{\mathrm{AD}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$$. The side $$\mathrm{AD}$$ is rotated by an acute angle $$\alpha$$ in the plane of parallelogram so that $$\mathrm{AD}$$ becomes $$\mathrm{AD}^{\prime}$$. If $$\mathrm{AD}^{\prime}$$ makes a right angle with side AB, then the cosine of the angle $$\alpha$$ is given by

MHT CET 2023 12th May Morning Shift
113

If the area of the triangle with vertices $$(1,2,0)$$, $$(1,0,2)$$ and $$(0, x, 1)$$ is $$\sqrt{6}$$ square units, then the value of $x$ is

MHT CET 2023 12th May Morning Shift
114

Let $$\overline{\mathrm{A}}$$ be a vector parallel to line of intersection of planes $$P_1$$ and $$P_2$$ through origin. $$P_1$$ is parallel to the vectors $$2 \hat{j}+3 \hat{k}$$ and $$4 \hat{j}-3 \hat{k}$$ and $$P_2$$ is parallel to $$\hat{j}-\hat{k}$$ and $$3 \hat{i}+3 \hat{j}$$, then the angle between $$\bar{A}$$ and $$2 \hat{i}+\hat{j}-2 \hat{k}$$ is

MHT CET 2023 12th May Morning Shift
115

$$\overline{\mathrm{u}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}$$ are three vectors such that $$|\overline{\mathrm{u}}|=1, |\bar{v}|=2,|\bar{w}|=3$$. If the projection of $$\bar{v}$$ along $$\bar{u}$$ is equal to projection of $$\bar{w}$$ along $$\bar{u}$$ and $$\bar{v}, \bar{w}$$ are perpendicular to each other, then $$|\bar{u}-\bar{v}+\bar{w}|=$$

MHT CET 2023 12th May Morning Shift
116

If $$\bar{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \bar{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}, \bar{c}=2 \hat{i}-\hat{j}+4 \hat{k}$$, then a vector $$\overline{\mathrm{d}}$$ which is parallel to vector $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ and which $$\overline{\mathrm{c}} \cdot \overline{\mathrm{d}}=15$$, is

MHT CET 2023 11th May Evening Shift
117

The unit vector perpendicular to each of the vectors $$\bar{a}+\bar{b}$$ and $$\bar{a}-\bar{b}$$, where $$\bar{a}=\hat{i}+\hat{j}+\hat{k}$$ and $$\overline{\mathrm{b}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$$ is

MHT CET 2023 11th May Evening Shift
118

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$ and $$\bar{c}$$ be a vector such that $$|\bar{c}-\bar{a}|=4,|(\bar{a} \times \bar{b}) \times \bar{c}|=3$$ and the angle between $$\overline{\mathrm{c}}$$ and $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ is $$\frac{\pi}{6}$$, then $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$$ is equal to

MHT CET 2023 11th May Evening Shift
119

If the area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is $$16 \mathrm{sq}$$. units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides (in sq. units) is

MHT CET 2023 11th May Evening Shift
120

If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}$$ are such that $$\bar{a}+\lambda \bar{b}$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is

MHT CET 2023 11th May Evening Shift
121

If $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+\alpha \hat{\mathrm{j}}+\beta \hat{\mathrm{k}}$$ are linearly dependent vectors and $$|\bar{c}|=\sqrt{3}$$, then the values of $$\alpha$$ and $$\beta$$ are respectively.

MHT CET 2023 11th May Evening Shift
122

If the volume of the parallelopiped is $$158 \mathrm{~cu}$$. units whose coterminus edges are given by the vectors $$\bar{a}=(\hat{i}+\hat{j}+n \hat{k}), \bar{b}=2 \hat{i}+4 \hat{j}-n \hat{k}$$ and $$\bar{c}=\hat{i}+n \hat{j}+3 \hat{k}$$, where $$n \geq 0$$, then the value of $$n$$ is

MHT CET 2023 11th May Morning Shift
123

If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors such that $$\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}}+\overline{\mathrm{c}})+\overline{\mathrm{b}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})+\overline{\mathrm{c}} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})=0 \quad$$ and $$\quad|\overline{\mathrm{a}}|=1$$, $$|\bar{b}|=8$$ and $$|\bar{c}|=4$$, then $$|\bar{a}+\bar{b}+\bar{c}|$$ has the value _________.

MHT CET 2023 11th May Morning Shift
124

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$(\bar{a} \times \bar{b})$$ and $$\bar{c}$$ is $$\frac{\pi}{6}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is

MHT CET 2023 11th May Morning Shift
125

If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is

MHT CET 2023 11th May Morning Shift
126

Let $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ be three unit vectors such that $$\bar{a} \times(\bar{b} \times \bar{c})=\frac{\sqrt{3}}{2}(\bar{b}+\bar{c})$$. If $$\bar{b}$$ is not parallel to $$\bar{c}$$, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is

MHT CET 2023 11th May Morning Shift
127

If $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are two unit vectors such that $$\overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is

MHT CET 2023 11th May Morning Shift
128

If $$(\bar{a} \times \bar{b}) \times \bar{c}=-5 \bar{a}+4 \bar{b}$$ and $$\bar{a} \cdot \bar{b}=3$$, then the value of $$\bar{a} \times(\bar{b} \times \bar{c})$$ is

MHT CET 2023 10th May Evening Shift
129

If $$\bar{p}=\hat{i}+\hat{j}+\hat{k}$$ and $$\bar{q}=\hat{i}-2 \hat{j}+\hat{k}$$. Then a vector of magnitude $$5 \sqrt{3}$$ units perpendicular to the vector $$\bar{q}$$ and coplanar with $$\bar{p}$$ and $$\bar{q}$$ is

MHT CET 2023 10th May Evening Shift
130

If $$\bar{a}$$ and $$\bar{b}$$ are two unit vectors such that $$\bar{a}+2 \bar{b}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is

MHT CET 2023 10th May Evening Shift
131

If $$\overline{\mathrm{a}}=\mathrm{m} \overline{\mathrm{b}}+\mathrm{nc}$$, where $$\overline{\mathrm{a}}=4 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$$, then $$\mathrm{m}+\mathrm{n}=$$

MHT CET 2023 10th May Evening Shift
132

If the volume of tetrahedron, whose vertices are with position vectors $$\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$$ and $$7 \hat{i}-4 \hat{j}+7 \hat{k}$$ is 11 cubic units, then value of $$\lambda$$ is

MHT CET 2023 10th May Evening Shift
133

Scalar projection of the line segment joining the points $$\mathrm{A}(-2,0,3), \mathrm{B}(1,4,2)$$ on the line whose direction ratios are $$6,-2,3$$ is

MHT CET 2023 10th May Morning Shift
134

If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}$$ are such that $$(\bar{a}+\lambda \bar{b})$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is

MHT CET 2023 10th May Morning Shift
135

The vector projection of $$\overline{\mathrm{AB}}$$ on $$\overline{\mathrm{CD}}$$, where $$A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$$ and $$\mathrm{D} \equiv(7,0,10)$$, is

MHT CET 2023 10th May Morning Shift
136

The vectors are $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|$$ and $$|\bar{c}-\bar{a}|=2 \sqrt{2}$$, angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{4}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is

MHT CET 2023 10th May Morning Shift
137

If $$\bar{a}=\hat{i}+2 \hat{j}+\hat{k}, \bar{b}=\hat{i}-\hat{j}+\hat{k}, \bar{c}=\hat{i}+\hat{j}-\hat{k}$$, then a vector in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\overline{\mathrm{c}}$$ is $$\frac{1}{\sqrt{3}}$$, is

MHT CET 2023 10th May Morning Shift
138

Let $$\bar{a}, \bar{b}, \bar{c}$$ be three non-zero vectors, such that no two of them are collinear and $$(\bar{a} \times \bar{b}) \times \bar{c}=\frac{1}{3}|\bar{b}||\bar{c}| \bar{a}$$. If $$\theta$$ is the angle between the vectors $$\bar{b}$$ and $$\bar{c}$$, then the value of $$\sin \theta$$ is

MHT CET 2023 10th May Morning Shift
139

$$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$$, then vector $$\overline{\mathrm{r}}$$ satisfying $$\overline{\mathrm{a}} \times \overline{\mathrm{r}}=\overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}} \cdot \overline{\mathrm{r}}=3$$ is

MHT CET 2023 9th May Evening Shift
140

The magnitude of the projection of the vector $$2 \hat{i}+\hat{j}+\hat{k}$$ on the vector perpendicular to the plane containing the vectors $$\hat{i}+\hat{j}+\hat{k}$$ and $$\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$$ is

MHT CET 2023 9th May Evening Shift
141

If $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ are any three non-zero vectors, then $$(\bar{a}+2 \bar{b}+\bar{c}) \cdot[(\bar{a}-\bar{b}) \times(\bar{a}-\bar{b}-\bar{c})]=$$

MHT CET 2023 9th May Evening Shift
142

Vectors $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are such that $$|\overline{\mathrm{a}}|=1 ;|\overline{\mathrm{b}}|=4$$ and $$\bar{a} \cdot \bar{b}=2$$. If $$\bar{c}=2 \bar{a} \times \bar{b}-3 \bar{b}$$, then the angle between $$\bar{b}$$ and $$\bar{c}$$ is

MHT CET 2023 9th May Evening Shift
143

Two adjacent sides of a parallelogram are $$2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\hat{i}-2 \hat{j}-3 \hat{k}$$, then the unit vector parallel to its diagonal is

MHT CET 2023 9th May Evening Shift
144

If $$\mathrm{D}, \mathrm{E}$$ and $$\mathrm{F}$$ are the mid-points of the sides $$\mathrm{BC}$$, $$\mathrm{CA}$$ and $$\mathrm{AB}$$ of triangle $$\mathrm{ABC}$$ respectively, then $$\overline{\mathrm{AD}}+\frac{2}{3} \overline{\mathrm{BE}}+\frac{1}{3} \overline{\mathrm{CF}}=$$

MHT CET 2023 9th May Evening Shift
145

If two vertices of a triangle are $$\mathrm{A}(3,1,4)$$ and $$\mathrm{B}(-4,5,-3)$$ and the centroid of the triangle is $$G(-1,2,1)$$, then the third vertex $$C$$ of the triangle is

MHT CET 2023 9th May Morning Shift
146

Let two non-collinear vectors $$\hat{a}$$ and $$\hat{b}$$ form an acute angle. A point $$\mathrm{P}$$ moves, so that at any time $$t$$ the position vector $$\overline{\mathrm{OP}}$$, where $$\mathrm{O}$$ is origin, is given by $$\hat{a} \sin t+\hat{b} \cos t$$, when $$P$$ is farthest from origin $$O$$, let $$M$$ be the length of $$\overline{\mathrm{OP}}$$ and $$\hat{\mathrm{u}}$$ be the unit vector along $$\overline{\mathrm{OP}}$$, then

MHT CET 2023 9th May Morning Shift
147

The distance of the point having position vector $$\hat{i}-2 \hat{j}-6 \hat{k}$$, from the straight line passing through the point $$(2,-3,-4)$$ and parallel to the vector $$6 \hat{i}+3 \hat{j}-4 \hat{k}$$ is units.

MHT CET 2023 9th May Morning Shift
148

The scalar product of the vector $$\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$$ with a unit vector along the sum of the vectors $$2 \hat{i}+4 \hat{j}-5 \hat{k}$$ and $$\lambda \hat{i}+2 \hat{j}+3 \hat{k}$$ is equal to 1 , then value of $$\lambda$$ is

MHT CET 2023 9th May Morning Shift
149

If $$[(\bar{a}+2 \bar{b}+3 \bar{c}) \times(\bar{b}+2 \bar{c}+3 \bar{a})] \cdot(\bar{c}+2 \bar{a}+3 \bar{b})=54$$ then the value of $$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$$ is

MHT CET 2023 9th May Morning Shift
150

The volume of parallelopiped, whose coterminous edges are given by $$\overline{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}, \vec{v}=\hat{i}+\hat{j}+3 \hat{k}, \bar{w}=2 \hat{i}+\hat{j}+\hat{k}$$ is 1 cu. units. If $$\theta$$ is the angle between $$\bar{u}$$ and $$\bar{w}$$, then the value of $$\cos \theta$$ is

MHT CET 2023 9th May Morning Shift
151

If $$\bar{a}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{k}}, \bar{b}=x \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+(1-x) \hat{\boldsymbol{k}}$$ and $$\bar{c}=y \hat{\boldsymbol{i}}+x \hat{\boldsymbol{j}}+(1+x-y) \hat{\boldsymbol{k}}$$, then $$[\bar{a} \bar{b} \bar{c}]$$ depends on

MHT CET 2022 11th August Evening Shift
152

Let $$\bar{a}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\bar{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\bar{c} \cdot \bar{a}=0$$, then $$\bar{c} \cdot \bar{b}$$ is equal to

MHT CET 2022 11th August Evening Shift
153

The magnitude of the projection of the vector $$2 \hat{\mathbf{i}}+ 3\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ on the vector perpendicular to the plane containing the vectors $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$$ is

MHT CET 2022 11th August Evening Shift
154

If $$\bar{a}=\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}, \bar{b}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$$ and $$\bar{c}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}$$ are three vectors then vector $$\bar{r}$$ in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\bar{c}$$ is $$\frac{1}{\sqrt{3}}$$, is given by

MHT CET 2022 11th August Evening Shift
155

The polar co-ordinates of the point, whose Cartesian coordinates are $$(-2 \sqrt{3}, 2)$$, are

MHT CET 2022 11th August Evening Shift
156

For any non-zero vectors $$\bar{a}, \bar{b}, \bar{c}$$, the value of $$\bar{a} \cdot[(\bar{b} \times \bar{c}) \times(\bar{a}+\bar{b}+\bar{c})]$$ is

MHT CET 2021 24th September Evening Shift
157

If $$\bar{a}=3 \hat{i}+\hat{j}-\hat{k}, \bar{b}=2 \hat{i}-\hat{j}+23 \hat{k}$$ and $$\bar{c}=7 \hat{i}-\hat{j}+23 \hat{k}$$, then which of the following is valid.

MHT CET 2021 24th September Evening Shift
158

If the angle between the vectors $$\overline{\mathrm{a}}=2 \lambda^2 \hat{\mathrm{i}}+4 \lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and $$\overline{\mathrm{b}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}$$ is obtuse, then $$\lambda \in$$

MHT CET 2021 24th September Evening Shift
159

If $$\bar{a}+\bar{b}, \bar{b}+\bar{c}, \bar{c}+\bar{a}$$ are coterminus edges of a parallelopiped, then its volume is

MHT CET 2021 24th September Evening Shift
160

$$\vec{a}=4 \hat{i}+13 \hat{j}-18 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$$ and $$\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}$$ are three vectors such that $$\vec{a}=x \vec{b}+y \vec{c}$$, then $$x+y=$$

MHT CET 2021 24th September Morning Shift
161

If $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}, \vec{a} \times \bar{b}=\bar{c}$$ and $$\vec{a} \cdot \vec{b}=1$$, then $$\vec{b}$$

MHT CET 2021 24th September Morning Shift
162

If the vectors $$\vec{a}=2 \hat{i}+p \hat{j}+4 \hat{k}$$ and $$\vec{b}=6 \hat{i}-9 \hat{j}+q \hat{k}$$ are collinear, then $$p$$ and $$q$$ are

MHT CET 2021 24th September Morning Shift
163

If $$|\vec{a}|=4,|\vec{b}|=5$$, then the values of $$k$$ for which $$\vec{a}+k \vec{b}$$ is perpendicular to $$\vec{a}-k \vec{b}$$ are

MHT CET 2021 24th September Morning Shift
164

The vectors $$\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}$$ and $$\overrightarrow{\mathrm{AC}}=5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$ are the sides of a triangle $$\mathrm{ABC}$$. The length of the median through $$\mathrm{A}$$ is

MHT CET 2021 23rd September Evening Shift
165

If $$\bar{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \bar{b}=-\hat{i}+2 \hat{j}-4 \hat{k}$$ and $$\bar{c}=\hat{i}+\hat{j}-2 \hat{k}$$, then $$(\bar{a} \times \bar{b}) \cdot(\bar{a} \times \bar{c})=$$

MHT CET 2021 23rd September Evening Shift
166

Let $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$$ and $$\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$$. If $$\overline{\mathrm{c}}$$ is a vector such that $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ is $$60^{\circ}$$. Then $$|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=$$

MHT CET 2021 23rd September Evening Shift
167

The projection of $$\bar{a}=\hat{i}-2 \hat{j}+\hat{k}$$ on $$\bar{b}=2 \hat{i}-\hat{j}+\hat{k}$$ is

MHT CET 2021 23rd September Evening Shift
168

If $$\bar{a}=2 \hat{i}-\hat{j}+\hat{k}, \bar{b}=\hat{i}+2 \hat{j}-3 \hat{k}$$ and $$\bar{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k}$$ are coplanar, then $$\lambda$$ is the root of the equation

MHT CET 2021 23rd September Evening Shift
169

If $$\hat{a}$$ is a unit vector such that $$(\bar{x}-\hat{a}) \cdot(\bar{x}+\hat{a})=8$$, then $$|\bar{x}|=$$

MHT CET 2021 23th September Morning Shift
170

Let $$\vec{v}=2 \hat{i}+2 \hat{j}-\hat{k}$$ and $$\bar{w}=\hat{i}+3 \hat{k}$$. If $$\bar{u}$$ is a unit vector, then the maximum value of the scalar triple product $$[\bar{u} \bar{v} \bar{w}]$$ is

MHT CET 2021 23th September Morning Shift
171

If $$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{c}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}$$ and $$\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$$ is perpendicular to $$\overline{\mathrm{c}}$$, then $$\lambda=$$

MHT CET 2021 23th September Morning Shift
172

If $$3 \hat{j}, 4 \hat{k}$$ and $$3 \hat{j}+4 \hat{k}$$ are the position vectors of the vertices $$A, B, C$$ respectively of $$\triangle A B C$$, then the position vector of the point in which the bisector of $$\angle \mathrm{A}$$ meets $$\mathrm{BC}$$ is

MHT CET 2021 23th September Morning Shift
173

If the vectors $$2 \hat{i}-\hat{j}-\hat{k} ; \hat{i}+2 \hat{j}-3 \hat{k}$$ and $$3 \hat{i}+\lambda \hat{j}+5 \hat{k}$$ are coplanar, then the value of $$\lambda$$ is

MHT CET 2021 22th September Evening Shift
174

The vector equation of the line whose Cartesian equations are $$y=2$$ and $$4 x-3 z+5=0$$ is

MHT CET 2021 22th September Evening Shift
175

The position vector of the point of inersection of the medians of a triangle, whose vertices are $$A(1,2,3), B(1,0,3)$$ and $$C(4,1,-3)$$ is

MHT CET 2021 22th September Morning Shift
176

The area of the parallelogram whose diagonals are represented by the vectors $$\bar{a}=3 \hat{i}-\hat{j}-2 \hat{k}$$ and $$\bar{b}=-\hat{i}+3 \hat{j}-3 \hat{k}$$ is

MHT CET 2021 22th September Morning Shift
177

If $$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$$ with $$|\overline{\mathrm{a}}|=3,|\overline{\mathrm{b}}|=5$$ and $$|\overline{\mathrm{c}}|=7$$, then angle between $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ is

MHT CET 2021 22th September Morning Shift
178

If $$|\bar{u}|=2$$ and $$\bar{u}$$ makes angles of $$60^{\circ}$$ and $$120^{\circ}$$ with axes $$\mathrm{OX}$$ and $$\mathrm{OY}$$ in the origin, then $$\bar{u}=$$

MHT CET 2021 22th September Morning Shift
179

If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are mutually perpendicular vectors having magnitudes $$1,2,3$$ respectively, then $$\left[\begin{array}{lll}\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}} & \overline{\mathrm{b}}-\overline{\mathrm{a}} & \overline{\mathrm{c}}\end{array}\right]=$$

MHT CET 2021 22th September Morning Shift
180

If $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{c}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and $$\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$$ is perpendicular to $$\overline{\mathrm{c}}$$, then $$\lambda=$$

MHT CET 2021 21th September Evening Shift
181

If $${\pi \over 2} < \theta < \pi $$ and $$|\overline a | = 5,|\overline b | = 13,|\overline a \times \overline b | = 25$$, then the value of $$\overline a \,.\,\overline b $$ is

MHT CET 2021 21th September Evening Shift
182

If $$|\bar{a} \times \bar{b}|^2+(\bar{a} \cdot \bar{b})^2=144$$ and $$|\bar{a}|=4$$, then $$|\bar{b}|=$$

MHT CET 2021 21th September Evening Shift
183

The distance between parallel lines

$$\begin{aligned} & \bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}-2 \hat{k}) \text { and } \\ & \bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+\hat{j}-2 \hat{k}) \text { is } \end{aligned}$$

MHT CET 2021 21th September Morning Shift
184

The vertices of triangle $$\mathrm{ABC}$$ are $$\mathrm{A} \equiv(3,0,0) ; \mathrm{B} \equiv(0,0,4) ; \mathrm{C} \equiv(0,5,4)$$. Find the position vector of the point in which the bisector of angle A meets B C is

MHT CET 2021 21th September Morning Shift
185

In a quadrilateral PQRS, M and N are mid-points of the sides PQ and RS respectively. If $$\overline {PS} + \overline {QR} = t\overline {MN} $$, then t =

MHT CET 2021 21th September Morning Shift
186

If vectors $$\bar{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$$ and $$\bar{c}=3 \hat{i}+\hat{j}+2 \hat{k}$$ are such that, $$\bar{a}+\lambda \bar{b}$$ is perpendicular to $$\bar{c}$$, then $$\lambda=$$

MHT CET 2021 21th September Morning Shift
187

If $$\bar{a}=3 \hat{i}-5 \hat{j}, \bar{b}=6 \hat{i}+3 \hat{j}$$ are two vectors and $$\bar{c}$$ is a vector such that $$\bar{c}=\bar{a} \times \bar{b}$$, then $$a: b$$ : is

MHT CET 2021 21th September Morning Shift
188

If $$|\bar{a}|=3,|\bar{b}|=4,|\bar{a}-\bar{b}|=5$$, then $$|\bar{a}+\bar{b}|=$$

MHT CET 2021 21th September Morning Shift
189

$$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are vectors such that $$|\overline{\mathrm{a}}|=5,|\overline{\mathrm{b}}|=4,|\overline{\mathrm{c}}|=3$$ and each is perpendicular to the sum of the other two, then $$|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^2=$$

MHT CET 2021 20th September Evening Shift
190

If $$[\bar{a} \bar{b} \bar{c}]=4$$, then the volume (in cubic units) of the parallelopiped with $$\bar{a}+2 \bar{b}, \bar{b}+2 \bar{c}$$ and $$\overline{\mathrm{c}}+2 \overline{\mathrm{a}}$$ as coterminal edges, is

MHT CET 2021 20th September Evening Shift
191

$$\overline{\mathrm{a}}, \overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ are three vectors such that $$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$$ and $$|\overline{\mathrm{a}}|=3,|\overline{\mathrm{b}}|=5,|\overline{\mathrm{c}}|=7$$, then the angle between $$\overline{\mathrm{a}}$$ and $$\bar{b}$$ is

MHT CET 2021 20th September Evening Shift
192

If area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is 20 square units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+\overline{\mathrm{b}}$$ and $$2 \overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides in square units is

MHT CET 2021 20th September Evening Shift
193

If $$\bar{r}=-4 \hat{i}-6 \hat{j}-2 \hat{k}$$ is a linear combination of the vectors $$\bar{a}=-\hat{i}+4 \hat{j}+3 \hat{k}$$ and $$\bar{b}=-8 \hat{i}-\hat{j}+3 \hat{k}$$, then

MHT CET 2021 20th September Evening Shift
194

If the volume of a tetrahedron whose conterminous edges are $$\vec{\mathrm{a}}+\vec{\mathrm{b}}, \vec{\mathrm{b}}+\vec{\mathrm{c}}, \vec{\mathrm{c}}+\vec{\mathrm{a}}$$ is 24 cubic units, then the volume of parallelopiped whose coterminous edges are $$\vec{\mathrm{a}}, \vec{\mathrm{b}}, \vec{\mathrm{c}}$$ is

MHT CET 2021 20th September Morning Shift
195

If $$\overline{\mathrm{e}}_1, \overline{\mathrm{e}}_2$$ and $$\overline{\mathrm{e}}_1+\overline{\mathrm{e}}_2$$ are unit vectors, then the angle between $$\overline{\mathrm{e}}_1$$ and $$\overline{\mathrm{e}}_2$$ is

MHT CET 2021 20th September Morning Shift
196

If $$\overline{\mathrm{a}}, \overline{\mathrm{b}} , \overline{\mathrm{c}}$$ are three vectors which are perpendicular to $$\overline{\mathrm{b}}+\overline{\mathrm{c}}, \overline{\mathrm{c}}+\overline{\mathrm{a}}$$ and $$\overline{\mathrm{a}}+\overline{\mathrm{b}}$$ respectively, such that $$|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=4$$, then $$|\bar{a}+\bar{b}+\bar{c}|=$$

MHT CET 2021 20th September Morning Shift
197

$$(2 \hat{\mathrm{i}}+6 \hat{\mathrm{i}}+27 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\mu \hat{\mathrm{k}})=\overline{0}$$, then $$\lambda$$ and $$\mu$$ are respectively

MHT CET 2021 20th September Morning Shift
198

If $\mathbf{a}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{b}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ and $\mathbf{c}=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}+23 \hat{\mathbf{k}}$ are three vectors, then which of the following statement is true.

MHT CET 2020 19th October Evening Shift
199

$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $p=(2 x+1) a-b$ and $q=(x-2) a+b$ are collinear vectors, then $x=$

MHT CET 2020 19th October Evening Shift
200

If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors and $p=\frac{\mathbf{b} \times \mathbf{c}}{[a b c]}, q=\frac{\mathbf{c} \times \mathbf{a}}{[a b c]}, r=\frac{\mathbf{a} \times \mathbf{b}}{[a b c]}$, then $\mathbf{a} \cdot \mathbf{p}+\mathbf{b} \cdot \mathbf{q}+\mathbf{c} \cdot \mathbf{r}=$

MHT CET 2020 19th October Evening Shift
201

Let $$G$$ be the centroid of a $$\triangle A B C$$ and $$\mathrm{O}_{b_\theta}$$ other point in that plane, then $$\mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{CG}=$$

MHT CET 2020 16th October Evening Shift
202

If the volume of the parallelopiped whose conterminus edges are along the vectors $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ is 12, then the volume of the tetrahedron whose conterminus edges are $$\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$$ and $$c+a$$ is

MHT CET 2020 16th October Evening Shift
203

For any non-zero vectors $$\mathbf{a}$$ and $$\mathbf{b}$$,

MHT CET 2020 16th October Evening Shift
204

If the vectors $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+m \hat{\mathbf{k}}$$ are coplanar, then $$m=$$

MHT CET 2020 16th October Morning Shift
205

The angles between the lines $$\mathbf{r}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \text { and } \mathbf{r}=(3 \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda^{\prime}(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}), \lambda, \lambda^{\prime} \in \mathbf{R}$$ is

MHT CET 2020 16th October Morning Shift
206

In a quadrilateral $$ABCD, M$$ and $$N$$ are the mid-points of the sides $$A B$$ and $$C D$$ respectively. If $$\mathbf{A D}+\mathbf{B C}=t \mathbf{M N}$$, then $$t=$$

MHT CET 2020 16th October Morning Shift
207

If $$[\vec{a}\ \vec{b}\ \vec{c}\ ] \neq 0$$, then $$\frac{[\vec{a}\ +\vec{b}\ \vec{b}\ +\vec{c}\ \vec{c}\ +\vec{a}\ ]}{[\vec{b}\ \vec{c}\ \vec{a}\ ]}=$$

MHT CET 2020 16th October Morning Shift
208

If the scalar triple product of the vectors $-3 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ and $7 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ is 272 then $\lambda=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
209

$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $\mathbf{c}=(x-2) \mathbf{a}+\mathbf{b}$ and $\mathbf{d}=(2 x+1) \mathbf{a}-\mathbf{b}$ are collinear vectors, then the value of $x=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
210

For any non zero vector, a, b, c $\mathbf{a} \cdot[(\mathbf{b}+\mathbf{c}) \times(\mathbf{a}+\mathbf{b}+\mathbf{c})]=$ ..........

MHT CET 2019 3rd May Morning Shift
211

If $A, B, C$ and $D$ are $(3,7,4),(5,-2,-3),(-4,5,6)$ and $(1,2,3)$ respectively, then the volume of the parallelopiped with $A B, A C$ and $A D$ as the co-terminus edges, is .......... cubic units.

MHT CET 2019 2nd May Evening Shift
212

If the vectors $x \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+y \hat{\mathbf{j}}-z \hat{\mathbf{k}}$ are collinear then the value of $\frac{x y^2}{z}$ is equal

MHT CET 2019 2nd May Evening Shift
213

Which of the following is not equal to $\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})$ ?

MHT CET 2019 2nd May Evening Shift
214

If $\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$ anc $\mathbf{c}+\mathbf{a}$ are coterminous edges of a parallel opiped then its volume is ..........

MHT CET 2019 2nd May Morning Shift
215

If $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$ are non-zero, non-coplanar vectors

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12