Differentiation · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

If $\mathrm{g}(x)=[\mathrm{f}(2 \mathrm{f}(x)+2)]^2$ and $\mathrm{f}(0)=-1, \mathrm{f}^{\prime}(0)=1$ then $g^{\prime}(0)$ is

MHT CET 2024 16th May Evening Shift
2

If $\mathrm{f}(x)=\frac{a \sin x+b \cos x}{c \sin x+d \cos x}$ is decreasing for all $x$ then

MHT CET 2024 16th May Evening Shift
3

If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ is equal to

MHT CET 2024 16th May Morning Shift
4

If $f(1)=1, f^{\prime}(1)=5$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

MHT CET 2024 16th May Morning Shift
5

If $x=\sin \theta, y=\sin ^3 \theta$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$ at $\theta=\frac{\pi}{2}$ is

MHT CET 2024 15th May Evening Shift
6

If $y=\frac{x^{\frac{2}{3}}-x^{\frac{-1}{3}}}{x^{\frac{2}{3}}+x^{\frac{-1}{3}}}, x \neq 0$, then $(x+1)^2 y_1=$

MHT CET 2024 15th May Evening Shift
7

The derivative of $\sin ^{-1}\left(2 x \sqrt{1-x^2}\right)$ w.r.t. $\sin ^{-1}\left(3 x-4 x^3\right)$ is

MHT CET 2024 15th May Evening Shift
8

If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

MHT CET 2024 15th May Evening Shift
9

If $$ y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^2 $$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

MHT CET 2024 15th May Morning Shift
10

If $(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^2-b^2$, where $\mathrm{a}>\mathrm{b}>0$, then $\frac{\mathrm{d} x}{\mathrm{~d} y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is

MHT CET 2024 15th May Morning Shift
11

If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$, then $\frac{\mathrm{d}^2 y}{d x^2}$ is equal to

MHT CET 2024 15th May Morning Shift
12

If $\mathrm{f}(x)=\log _{x^2}(\log x)$, then at $x=\mathrm{e}, \mathrm{f}^{\prime}(x)$ has the value

MHT CET 2024 11th May Evening Shift
13

Let $\mathrm{f}(x)=\frac{x}{\sqrt{\mathrm{a}^2+x^2}}-\frac{\mathrm{d}-x}{\sqrt{\mathrm{~b}^2+(\mathrm{d}-x)^2}}, x \in \mathbb{R}$ where $\mathrm{a}, \mathrm{b}, \mathrm{d}$ are non-zero real constants. Then

MHT CET 2024 11th May Evening Shift
14

If $y=(\sin x)^{\tan x}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

MHT CET 2024 11th May Evening Shift
15

If $\mathrm{f}(x)=(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)$, then $f^{\prime}(1)=$

MHT CET 2024 11th May Morning Shift
16

If $x^2+y^2=\mathrm{t}+\frac{1}{\mathrm{t}}, x^4+y^4=\mathrm{t}^2+\frac{1}{\mathrm{t}^2}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

MHT CET 2024 11th May Morning Shift
17

If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

MHT CET 2024 10th May Evening Shift
18

If $x^2 y^2=\sin ^{-1} x+\cos ^{-1} x$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ and $y=2$ is

MHT CET 2024 10th May Evening Shift
19

If $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{f}(x)=4 x^3-\frac{3}{x^4}$ such that $\mathrm{f}(2)=0$, then $\mathrm{f}(x)$ is equal to

MHT CET 2024 10th May Evening Shift
20
If $$y = {{\sin x} \over {1 + {{\cos x} \over {1 + {{\sin x} \over {1 + {{\cos x} \over {...}}}}}}}}$$, then $\frac{dy}{dx}$ is given by
MHT CET 2024 10th May Morning Shift
21

The curve $x^4-2 x y^2+y^2+3 x-3 y=0$ cuts the X -axis at $(0,0)$ at an angle of

MHT CET 2024 10th May Morning Shift
22

If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

MHT CET 2024 10th May Morning Shift
23

If $y=a x^{n+1}+b x^{-n}$, then $x^2 \frac{d^2 y}{d x^2}=$

MHT CET 2024 10th May Morning Shift
24

If $y=\sin ^{-1}\left(\frac{3 x}{2}-\frac{x^3}{2}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

MHT CET 2024 9th May Evening Shift
25

If $\log (x+y)=\sin (x+y)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is

MHT CET 2024 9th May Evening Shift
26

Let $\mathrm{f}(x)=\mathrm{e}^x, \mathrm{~g}(x)=\sin ^{-1} x$ and $\mathrm{h}(x)=\mathrm{f}(\mathrm{g}(x))$, then $\left(\frac{h^{\prime}(x)}{h(x)}\right)^2$ is equal to

MHT CET 2024 9th May Evening Shift
27

If for $x \in\left(0, \frac{1}{4}\right)$, the derivative of $\tan ^{-1}\left(\frac{6 x \sqrt{x}}{1-9 x^3}\right)$ is $\sqrt{x} \cdot g(x)$, then $g(x)$ equals

MHT CET 2024 9th May Morning Shift
28
 

Derivative of $\mathrm{e}^x$ w.r.t. $\sqrt{x}$ is

MHT CET 2024 9th May Morning Shift
29

If $\mathrm{f}(x)=\frac{x^2-x}{x^2+2 x}$ then $\frac{\mathrm{d}}{\mathrm{d} x}\left(\mathrm{f}^{-1}(x)\right)$ at $x=2$ is

MHT CET 2024 9th May Morning Shift
30

If $y=A \cos \mathrm{n} x+\mathrm{B} \sin \mathrm{nx}$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}=$

MHT CET 2024 4th May Evening Shift
31

If the function $\mathrm{f}(x)=x^3+\mathrm{e}^{\frac{x}{2}}$ and $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$ then the value of $g^{\prime}(1)$ is

MHT CET 2024 4th May Morning Shift
32

If $y=\left((x+1)(4 x+1)(9 x+1) \ldots\left(\mathrm{n}^2 x+1\right)\right)^2$, then $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $x=0$ is

MHT CET 2024 4th May Morning Shift
33

If $y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^4$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

MHT CET 2024 3rd May Evening Shift
34

Derivative of $\sin ^2 x$ with respect to $e^{\cos x}$

MHT CET 2024 3rd May Evening Shift
35

If $y=\log \left[\mathrm{e}^{5 x}\left(\frac{3 x-4}{x+5}\right)^{\frac{4}{3}}\right]$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

MHT CET 2024 3rd May Morning Shift
36
 

Let $f$ be a twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=[\mathrm{f}(x)]^2+[\mathrm{g}(x)]^2$. If $\mathrm{h}(5)=1$, then $\mathrm{h}(10)$ is __________.

MHT CET 2024 3rd May Morning Shift
37

If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ is equal to

MHT CET 2024 3rd May Morning Shift
38

If $\mathrm{f}(x)=\log _{x^2}\left(\log _{\mathrm{e}} x\right)$, then $\mathrm{f}^{\prime}(x)$ at $x=\mathrm{e}$ is

MHT CET 2024 2nd May Evening Shift
39

If $x=\sec \theta-\cos \theta, y=\sec ^{10} \theta-\cos ^{10} \theta$ and $\left(x^2+4\right)\left(\frac{d y}{d x}\right)^2=k\left(y^2+4\right)$, then the value of $k$ is

MHT CET 2024 2nd May Evening Shift
40

If $\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \cdot 3^x}{1+9^x}\right)$, then $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)$ equals

MHT CET 2024 2nd May Evening Shift
41

If $\mathrm{F}(x)=\left(\mathrm{f}\left(\frac{x}{2}\right)\right)^2+\left(\mathrm{g}\left(\frac{x}{2}\right)\right)^2$, where $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x)$ and $\mathrm{g}(x)=\mathrm{f}^{\prime}(x)$ and given by $\mathrm{F}(5)=5$, then $F(10)$ is equal to

MHT CET 2024 2nd May Evening Shift
42

The approximate value of $\sqrt[3]{0.026}$ is

MHT CET 2024 2nd May Evening Shift
43

If $y=\left[\mathrm{e}^{4 x}\left(\frac{x-4}{x+3}\right)^{\frac{3}{4}}\right]$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

MHT CET 2024 2nd May Morning Shift
44

If $y=a \sin x+b \cos x \quad$ (where $\mathrm{a}$ and $\mathrm{b}$ are constants), then $y^2+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2$ is

MHT CET 2024 2nd May Morning Shift
45

If $y=\sqrt{\frac{1-\sin ^{-1} x}{1+\sin ^{-1} x}}$, then $\left(\frac{d y}{d x}\right)$ at $x=0$ is

MHT CET 2024 2nd May Morning Shift
46

If $$x=\sqrt{\mathrm{e}^{\sin ^{-1} t}}$$ and $$y=\sqrt{\mathrm{e}^{\cos ^{-1} t}}$$, then $$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$$ is

MHT CET 2023 14th May Evening Shift
47

If $$\mathrm{f}^{\prime}(x)=\sin (\log x)$$ and $$y=\mathrm{f}\left(\frac{2 x+3}{3-2 x}\right)$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=1$$ is

MHT CET 2023 14th May Evening Shift
48

Let $$\mathrm{P}(x)$$ be a polynomial of degree 2, with $$\mathrm{P}(2)=-1, \mathrm{P}^{\prime}(2)=0, \mathrm{P}^{\prime \prime}(2)=2$$, then $$\mathrm{P}(1.001)$$ is

MHT CET 2023 14th May Evening Shift
49

If $$y=\sqrt{(x-\sin x)+\sqrt{(x-\sin x)+\sqrt{(x-\sin x) \ldots.}}}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}=$$

MHT CET 2023 14th May Evening Shift
50

Let $$f: R \rightarrow R$$ be a function such that $$\mathrm{f}(x)=x^3+x^2 \mathrm{f}^{\prime}(1)+x \mathrm{f}^{\prime \prime}(2)+6, x \in \mathrm{R}$$, then $$\mathrm{f}(2)$$ equals

MHT CET 2023 14th May Morning Shift
51

$$\text { If } y=\left(\sin ^{-1} x\right)^2+\left(\cos ^{-1} x\right)^2, \text { then }\left(1-x^2\right) y_2-x y_1=$$

MHT CET 2023 14th May Morning Shift
52

If $$y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots(\mathrm{n} x+1)]^n$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

MHT CET 2023 14th May Morning Shift
53

The money invested in a company is compounded continuously. If ₹ 200 invested today becomes ₹ 400 in 6 years, then at the end of 33 years it will become ₹

MHT CET 2023 14th May Morning Shift
54

$$y=\frac{\sqrt[3]{1+3 x} \sqrt[4]{1+4 x} \sqrt[5]{1+5 x}}{\sqrt[7]{1+7 x} \sqrt[8]{1+8 x}} \text {. Then, } \frac{d y}{d x} \text { at } x=0$$ is

MHT CET 2023 13th May Evening Shift
55

Let $$f: R \rightarrow R$$ be a function such that $$f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in R \text {, }$$ then $$f(2)$$ equals

MHT CET 2023 13th May Evening Shift
56

If $$x=\log _e\left(\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}}\right), \tan \frac{y}{2}=\sqrt{\frac{1-t}{1+t}}$$ Then, $$\left(y_1\right)_{t=1 / 2}$$ has the value

MHT CET 2023 13th May Evening Shift
57

Differentiation of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$ w.r.t. $$\cos ^{-1}\left(\sqrt{\frac{1+\sqrt{1+x^2}}{2 \sqrt{1+x^2}}}\right)$$ is

MHT CET 2023 13th May Morning Shift
58

If $$y=\tan ^{-1}\left(\frac{4 \sin 2 x}{\cos 2 x-6 \sin ^2 x}\right)$$, then $$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$$ at $$x=0$$ is

MHT CET 2023 13th May Morning Shift
59

Let $$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$$ be a function such that $$\mathrm{f}(x)=x^3+x^2 \mathrm{f}^{\prime}(1)+x \mathrm{f}^{\prime \prime}(2)+6, x \in \mathrm{R}$$, then $$\mathrm{f}(2)$$ is

MHT CET 2023 13th May Morning Shift
60

If $$\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \log x}{1+(\log x)^2}\right)$$, then $$\mathrm{f}^{\prime}(\mathrm{e})$$ is

MHT CET 2023 12th May Evening Shift
61

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$\left(1+\log _e 2 x\right)^2 \frac{d y}{d x}$$ is equal to

MHT CET 2023 12th May Evening Shift
62

If $$\tan y=\frac{x \sin \alpha}{1-x \cos \alpha}$$ and $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{m}}{x^2+2 \mathrm{n} x+1}$$, then $$\mathrm{m}^2+\mathrm{n}^2$$ is

MHT CET 2023 12th May Evening Shift
63

The derivative of $$\mathrm{f}(\tan x)$$ w.r.t. $$\mathrm{g}(\sec x)$$ at $$x=\frac{\pi}{4}$$ where $$\mathrm{f}^{\prime}(1)=2$$ and $$\mathrm{g}^{\prime}(\sqrt{2})=4$$ is

MHT CET 2023 12th May Morning Shift
64

If $$x=-1$$ and $$x=2$$ are extreme points of $$\mathrm{f}(x)=\alpha \log x+\beta x^2+x, \alpha$$ and $$\beta$$ are constants, then the value of $$\alpha^2+2 \beta$$ is

MHT CET 2023 12th May Morning Shift
65

$$\text { If } \log (x+y)=2 x y \text {, then } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { at } x=0 \text { is }$$

MHT CET 2023 12th May Morning Shift
66

$$y=(1+x)\left(1+x^2\right)\left(1+x^4\right) \ldots \ldots \ldots\left(1+x^{2 n}\right)$$, then the value of $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

MHT CET 2023 12th May Morning Shift
67

If $$\mathrm{f}(x)=3^x ; \mathrm{g}(x)=4^x$$, then $$\frac{\mathrm{f}^{\prime}(0)-\mathrm{g}^{\prime}(0)}{1+\mathrm{f}^{\prime}(0) \mathrm{g}^{\prime}(0)}$$ is

MHT CET 2023 11th May Evening Shift
68

$$\text { For all real } x \text {, the minimum value of } \frac{1-x+x^2}{1+x+x^2} \text { is }$$

MHT CET 2023 11th May Evening Shift
69

The set of all points, where the derivative of the functions $$\mathrm{f}(x)=\frac{x}{1+|x|}$$ exists, is

MHT CET 2023 11th May Evening Shift
70

If $$y=[(x+1)(2 x+1)(3 x+1) \ldots(\mathrm{n} x+1)]^{\frac{3}{2}}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

MHT CET 2023 11th May Evening Shift
71

If $$y=\log _{\sin x} \tan x$$, then $$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=\frac{\pi}{4}}$$ has the value

MHT CET 2023 11th May Morning Shift
72

Let $$\mathrm{f}(x)=\log (\sin x), 0 < x < \pi$$ and $$\mathrm{g}(x)=\sin ^{-1}\left(\mathrm{e}^{-x}\right), x \geq 0$$. If $$\alpha$$ is a positive real number such that $$\mathrm{a}=(\mathrm{fog})^{\prime}(\alpha)$$ and $$\mathrm{b}=(\mathrm{fog})(\alpha)$$, then

MHT CET 2023 11th May Morning Shift
73

Derivative of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right)$$ w.r.t. $$\cos ^{-1} x^2$$ is

MHT CET 2023 11th May Morning Shift
74

Let $$f$$ be a differentiable function such that $$\mathrm{f}(1)=2$$ and $$\mathrm{f}^{\prime}(x)=\mathrm{f}(x)$$, for all $$x \in \mathrm{R}$$. If $$\mathrm{h}(x)=\mathrm{f}(\mathrm{f}(x))$$, then $$\mathrm{h}^{\prime}(1)$$ is equal to

MHT CET 2023 10th May Evening Shift
75

If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then $$\frac{d y}{d x}$$ at $$x=0$$ is

MHT CET 2023 10th May Evening Shift
76

If $$x=3 \tan \mathrm{t}$$ and $$y=3 \sec \mathrm{t}$$, then the value of $$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$$ at $$\mathrm{t}=\frac{\pi}{4}$$ is

MHT CET 2023 10th May Evening Shift
77

If $$y=\tan ^{-1}\left(\frac{\log \left(\frac{\mathrm{e}}{x^2}\right)}{\log \left(e x^2\right)}\right)+\tan ^{-1}\left(\frac{4+2 \log x}{1-8 \log x}\right)$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is

MHT CET 2023 10th May Evening Shift
78

If $$y=\cos ^{-1}\left(\frac{\mathrm{a}^2}{\sqrt{x^4+\mathrm{a}^4}}\right)$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is

MHT CET 2023 10th May Morning Shift
79

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$(1+\log 2 x)^2 \frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

MHT CET 2023 10th May Morning Shift
80

If $$\mathrm{f}(x)=\mathrm{e}^x, \mathrm{~g}(x)=\sin ^{-1} x$$ and $$\mathrm{h}(x)=\mathrm{f}(\mathrm{g}(x))$$, then $$\frac{\mathrm{h}^{\prime}(x)}{\mathrm{h}(x)}$$ is

MHT CET 2023 10th May Morning Shift
81

If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then the value of $$y^{\prime}(0)$$ is

MHT CET 2023 9th May Evening Shift
82

If $$x^{\mathrm{k}}+y^{\mathrm{k}}=\mathrm{a}^{\mathrm{k}}(\mathrm{a}, \mathrm{k}>0)$$ and $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0$$, then $$\mathrm{k}$$ has the value

MHT CET 2023 9th May Evening Shift
83

If $$\mathrm{g}$$ is the inverse of $$\mathrm{f}$$ and $$\mathrm{f}^{\prime}(x)=\frac{1}{1+x^3}$$, then $$\mathrm{g}^{\prime}(x)$$ is

MHT CET 2023 9th May Evening Shift
84

The rate of change of $$\sqrt{x^2+16}$$ with respect to $$\frac{x}{x-1}$$ at $$x=5$$ is

MHT CET 2023 9th May Morning Shift
85

If $$x^2+y^2=\mathrm{t}+\frac{1}{\mathrm{t}}$$ and $$x^4+y^4=\mathrm{t}^2+\frac{1}{\mathrm{t}^2}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

MHT CET 2023 9th May Morning Shift
86

If $$\mathrm{f}(1)=1, \mathrm{f}^{\prime}(1)=3$$, then the derivative of $$\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$$ at $$x=1$$ is

MHT CET 2023 9th May Morning Shift
87

The derivative of $$\mathrm{f}(\sec x)$$ with respect to $$g(\tan x)$$ at $$x=\frac{\pi}{4}$$, where $$f^{\prime}(\sqrt{2})=4$$ and $$g^{\prime}(1)=2$$, is

MHT CET 2023 9th May Morning Shift
88

If $$y=\log \sqrt{\frac{1+\sin x}{1-\sin x}}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=\frac{\pi}{3}$$ is

MHT CET 2022 11th August Evening Shift
89

If $$y=\sin \left(2 \tan ^{-1} \sqrt{\frac{1+x}{1-x}}\right)$$ then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

MHT CET 2022 11th August Evening Shift
90

If $$y^{\frac{1}{m}}+y^{\frac{-1}{m}}=2 x, x \neq 1$$, then $$\left(x^2-1\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2$$ is equal to

MHT CET 2022 11th August Evening Shift
91

If $$y=1+x e^y$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 24th September Evening Shift
92

If $$x=e^t(\sin t-\cos t)$$ and $$y=e^t(\sin t+\cos t)$$, then $$\frac{d y}{d x}$$ at $$t=\frac{\pi}{3}$$ is

MHT CET 2021 24th September Evening Shift
93

If $$\sin ^2 x+\cos ^2 y=1$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 24th September Evening Shift
94

$$ \text { If } u=\cos ^3 x, v=\sin ^3 x \text {, then }\left(\frac{d v}{d u}\right)_{x=\frac{\pi}{4}} \text { is equal to } $$

MHT CET 2021 24th September Morning Shift
95

If $$y=\log _{10} x+\log _x 10+\log _x x+\log _{10} 10$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 24th September Morning Shift
96

If $$y=x \tan y$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 23rd September Evening Shift
97

The derivative of the function $$\cot ^{-1}\left[(\cos 2 x)^{1 / 2}\right]$$ at $$x=\pi / 6$$ is

MHT CET 2021 23rd September Evening Shift
98

For all real $$x$$, the minimum value of the function $$f(x)=\frac{1-x+x^2}{1+x+x^2}$$ is

MHT CET 2021 23rd September Evening Shift
99

If $$f(x)=\operatorname{cosec}^{-1}\left[\frac{10}{6 \sin \left(2^x\right)-8 \cos \left(2^x\right)}\right]$$, then $$f^{\prime}(x)=$$

MHT CET 2021 23th September Morning Shift
100

If $$y=\log \sqrt{\tan x}$$, then the value of $$\frac{d y}{d x}$$ at $$x=\frac{\pi}{4}$$ is

MHT CET 2021 23th September Morning Shift
101

If $$\mathrm{x}=\mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)$$ and $$\mathrm{y}=\mathrm{b}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$$, then $$\frac{\mathrm{dy}}{\mathrm{dx}}=$$

MHT CET 2021 23th September Morning Shift
102

If $$y=\tan ^{-1} \sqrt{\frac{1+\cos x}{1-\cos x}}$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 22th September Evening Shift
103

If $$x^y \cdot y^x=16$$, then $\frac{d y}{d x}$ at $(2,2)$$ is

MHT CET 2021 22th September Evening Shift
104

If $$y^2=a x^2+b x+c$$, where $$a, b, c$$ are constants, then $$y^3 \frac{d^2 y}{d x^2}$$ is equal to

MHT CET 2021 22th September Morning Shift
105

$$x=\frac{1-t^2}{1+t^2}$$ and $$y=\frac{2 a t}{1+t^2}$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 22th September Morning Shift
106

If y = 2 sin x + 3 cos x and y + A$$\mathrm{\frac{d^2y}{dx^2}}$$ = B, then the values of A, B are respectively

MHT CET 2021 21th September Evening Shift
107

If $$y = {\tan ^{ - 1}}\left\{ {{{a\cos x - b\sin x} \over {b\cos x + a\sin x}}} \right\}$$, then $${{dy} \over {dx}}$$

MHT CET 2021 21th September Evening Shift
108

If $$e^{-y} \cdot y=x$$, then $$\frac{d y}{d x}$$ is

MHT CET 2021 21th September Morning Shift
109

If $$y=\operatorname{cosec}^{-1}\left[\frac{\sqrt{x}+1}{\sqrt{x}-1}\right]+\cos ^{-1}\left[\frac{\sqrt{x}-1}{\sqrt{x}+1}\right]$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 21th September Morning Shift
110

The derivative of $$(\log x)^x$$ with respect to $$\log x$$ is

MHT CET 2021 21th September Morning Shift
111

$$y=\sqrt{e^{\sqrt{x}}}$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 20th September Evening Shift
112

If $$y=\sin ^{-1}\left[\cos \sqrt{\frac{1+x}{2}}\right]+x^x$$, then $$\frac{d y}{d x}$$ at $$x=1$$ is

MHT CET 2021 20th September Evening Shift
113

If $$x=a(t+\sin t), y=a(1-\cos t)$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 20th September Evening Shift
114

If $$y=\log \tan \left(\frac{x}{2}\right)+\sin ^{-1}(\cos x)$$, then $$\frac{d y}{d x}=$$

MHT CET 2021 20th September Morning Shift
115

If $$h(x)=\sqrt{4 f(x)+3 g(x)}, f(1)=4, g(1)=3, f^{\prime}(1)=3, g^{\prime}(1)=4$$, then $$h^{\prime}(1)=$$

MHT CET 2021 20th September Morning Shift
116

If $$x=a \cos \theta, y=b \sin \theta$$, then $$\left[\frac{d^2 y}{d x^2}\right]_{\theta=\frac{\pi}{4}}=$$

MHT CET 2021 20th September Morning Shift
117

If $x=a \sin t-b \cos t, y=a \cos t+b \sin t$, then $y^3 \frac{d^2 y}{d x^2}+x^2+y^2=$

MHT CET 2020 19th October Evening Shift
118

If $y=\sin ^{-1}\left[\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]$, then $\frac{d y}{d x}=$

MHT CET 2020 19th October Evening Shift
119

If $x^2 y^2=\sin ^{-1} \sqrt{x^2+y^2}+\cos ^{-1} \sqrt{x^2+y^2}$ then $\frac{d y}{d x}=$

MHT CET 2020 19th October Evening Shift
120

If $$f(x)=\sin ^{-1}\left(\sqrt{\frac{1-x}{2}}\right)$$, then $$f^{\prime}(x)=$$

MHT CET 2020 16th October Evening Shift
121

If $$\frac{x}{\sqrt{1+x}}+\frac{y}{\sqrt{1+y}}=0, x \neq y$$, then $$(1+x)^2 \frac{d y}{d x}=$$

MHT CET 2020 16th October Morning Shift
122

If $$\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=4$$, then $$\frac{d y}{d x}=$$

MHT CET 2020 16th October Morning Shift
123

If $$f(x)=\log (\sec x+\tan x)$$, then $$f^{\prime}\left(\frac{\pi}{4}\right)=$$

MHT CET 2020 16th October Morning Shift
124

If $y=\log \left[\frac{x+\sqrt{x^2+25}}{\sqrt{x^2+25}-x}\right]$ then $\frac{d y}{d x}=\ldots \ldots$

MHT CET 2019 3rd May Morning Shift
125

If $x=\sin \theta, y=\sin ^3 \theta$ then $\frac{d^2 y}{d x^2}$ at $\theta=\frac{\pi}{2}$ is ............

MHT CET 2019 2nd May Evening Shift
126

If $x^y=e^{x-y}$, then $\frac{d y}{d x}$ at $x=1$ is ...........

MHT CET 2019 2nd May Evening Shift
127

Derivative of $\log _{e^2}(\log x)$ with respect to $x$ is

MHT CET 2019 2nd May Morning Shift
128

If $x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}$, then $\frac{d y}{d x}=\ldots .$.

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12