Chemical Kinetics · Chemistry · MHT CET
MCQ (Single Correct Answer)
In a first order reaction $60 \%$ of the reactant converts into product in 45 minute. Calculate rate constant of the reaction.
For the reaction,
$$\mathrm{CH}_3 \mathrm{Br}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \longrightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{aq})}+\mathrm{Br}_{(\mathrm{aq})}^{-}$$
rate of consumption of $\mathrm{OH}_{(\mathrm{aq})}^{-}$is $\mathrm{x} \mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$ What is the rate of formation of $\mathrm{Br}_{(9 q)}^{-}$?
For the reaction,
$$\mathrm{H}_{2(g)}+\mathrm{Br}_{2(8)} \longrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}, \mathrm{r}=\mathrm{k}\left[\mathrm{H}_2\right]\left[\mathrm{Br}_2\right]^{\frac{1}{2}}$$
What is the molecularity and order of reaction respectively?
Which of the following is true for a reaction as per coliision theory?
Rate of reaction, $\mathrm{A}+\mathrm{B} \rightarrow$ product, is $7.2 \times 10^{-2} \mathrm{moldm}^{-3} \mathrm{~s}^{-1}$ at $[\mathrm{A}]=0.4 \mathrm{~mol} \mathrm{dm}^{-3}$ and $[B]=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$. The reaction is first order in A and second order in B. Calculate rate constant.
A zero order reaction has half life time of 0.2 minute. If initial concentration of reactant is $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$. Find rate constant.
The reaction given below $2 \mathrm{NH}_{3(\mathrm{g})} \xrightarrow{\mathrm{Pt}} \mathrm{N}_{2(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{g})}$ has rate of reaction $2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{sec}^{-1}$ formation of $\mathrm{H}_{2(\mathrm{~g})}$ ?
For reaction $\mathrm{A}+\mathrm{B} \rightarrow$ product, rate of reaction is $3.6 \times 10^{-2} \mathrm{sec}^{-1}$. When $[\mathrm{A}]=0.2 \mathrm{moldm}^{-3}$ and $[B]=0.1 \mathrm{moldm}^{-3}$, calculate rate constant of reaction if reaction is first order in A and second order is B ?
For a reaction $\mathrm{r}=\mathrm{k}[\mathrm{A}][\mathrm{B}]^2$, if concentration of $A$ is doubled the rate of reaction
For the reaction
$$\begin{aligned} & 2 \mathrm{NO}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_2 \mathrm{O}_{(\mathrm{s})} \\\\ & \text { rate }=\mathrm{k}[\mathrm{NO}]^2\left[\mathrm{H}_2\right] . \end{aligned}$$
What is the order of reaction with respect to $\mathrm{H}_2$ and overall order of reaction respectively?
Which among the following statements is NOT true about rate constant?
A first order reaction takes 40 minute for $20 \%$ decomposition. Calculate its rate constant.
If instantaneous rate of reaction is given as $$ -\frac{1}{\mathrm{a}} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\frac{1}{\mathrm{~b}} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}=\frac{1 \mathrm{~d}[\mathrm{C}]}{\mathrm{c}]}=\frac{1 \mathrm{~d}[\mathrm{D}]}{\mathrm{d}]}$$
the reaction is represented as
Rate law for a reaction is $r=k[A]^2[B]$. If rate constant is $6.25 \mathrm{~mol}^{-2} \mathrm{dm}^6 \mathrm{~s}^{-1}$, what is the rate of reaction when $[\mathrm{A}]=1 \mathrm{~mol} \mathrm{dm}^{-3}$ and $[\mathrm{B}]=0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ ?
What is the time needed to reduce the initial concentration of reactant to $10 \%$ in a first order reaction if its half life time is 10 minutes?
Which of the following is an elementary reaction?
Rate constant of a reaction, $$ 2 \mathrm{NO}_2 \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$$
is 4.7672 minute $^{-1}$. Calculate half life of reaction.
Initial concentration of reactant in a first order reaction is $0.08 \mathrm{~mol} \mathrm{~dm}^{-3}$ What concentration would remain after 40 minute?
$$\left(\text { given } \frac{[\mathrm{A}]_0}{[\mathrm{~A}]_{\mathrm{t}}}=5.00\right)$$
For the reaction $\mathrm{A}+\mathrm{B} \longrightarrow$ product, rate law equation is, rate $=k[A]^2[B]$. If rate of reaction is $0.22 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, calculate rate constant. ($\mathrm{[A}]=1 \mathrm{~mol} \mathrm{~L}^{-1},[\mathrm{~B}]=0.25 \mathrm{~mol} \mathrm{~L}^{-1})$
Rate of a first order reaction is $1.5 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ minute ${ }^{-1}$ at 0.5 M concentration of reactant, calculate half life of reaction.
Which from following decides the rate of multistep reaction?
For a zero order reaction, $\mathrm{A} \longrightarrow$ product, concentration of A decreases from $1.2 \mathrm{~mol~dm}^{-3}$ to $0.4 \mathrm{~mol~dm}^{-3}$ in 240 second. What is rate constant of the reaction?
Which of the following is NOT true about order of a reaction?
Calculate rate constant of first order reaction if concentration of reactant decreases by $90 \%$ in 30 minute?
The reaction $2 \mathrm{~A}+\mathrm{B}+\mathrm{C} \longrightarrow \mathrm{D}+\mathrm{E}$ is found to be first order in A , second order in B and zero order in C . What is the effect of increasing concentration of all reactants twice?
Identify order of following reaction.
$$\mathrm{H}_2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_2 \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$$
For the reaction, $\mathrm{N}_{2(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{g})}$ $\mathrm{NH}_3$ is formed at a rate of $0.088 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$. Calculate consumption rate of $\mathrm{N}_{2(\mathrm{g})}$.
Consider the reaction $3 \mathrm{I}^{-}+\mathrm{S}_2 \mathrm{O}_8^{2-} \longrightarrow \mathrm{I}_3^{-}+2 \mathrm{SO}_4^{2-}$, at a particular time t , $\frac{\mathrm{d}\left[\mathrm{SO}_4^{2-}\right]}{\mathrm{dt}}$ is $2.2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$. What is the value of $\frac{\mathrm{d}\left[\mathrm{S}_2 \mathrm{O}_8^{2-}\right]}{\mathrm{dt}}$ ?
For the reaction, $\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \longrightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$ rate of reaction is proportional to square of $\left[\mathrm{NO}_2\right]$ and independent of [CO]. What is the rate law equation?
Find the percentage of unreacted reactant for zero order reaction in 90 second having rate constant $1 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$.
What is the half life of a first order reaction if time required to decrease concentration of reactant from 0.8 M to 0.2 M is 12 hour?
For the reaction $2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ rate and rate constant are $1.02 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $3.4 \times 10^{-5} \mathrm{~s}^{-1}$. What is the conc. of $\mathrm{N}_2 \mathrm{O}_5$ ?
What is the order of following reaction
$$2 \mathrm{H}_2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_2 \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$$
Half life of a first order reaction is 1 hour. What fraction of it will remain after 3 hour?
In the Arrhenius plot of logk versus $1 / T$ find the value of intercept on $y$ axis
For the reaction,
$$3 \mathrm{I}_{\mathrm{(aq.)}}^{-}+\mathrm{S}_2 \mathrm{O}_{8(\mathrm{aq.})}^{2-} \longrightarrow 2 \mathrm{SO}_{4(\mathrm{aq.})}^{2-}+\mathrm{I}_{3(\mathrm{aq.})}^{-}$$
rate of formation of $\mathrm{SO}_{4(\mathrm{aq.})}^{2-}$ is $0.044 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$.
Calculate rate of consumption of $\mathrm{I}_{(\mathrm{aq.})}^{-}$.
For a zero order reaction $\mathrm{A} \longrightarrow$ product. Conc. of $A$ decreases from $0.8 \mathrm{~mol} \mathrm{~dm}^{-3}$ to $0.2 \mathrm{~mol} \mathrm{~dm}^{-3}$ in 6 minute. What is rate constant of the reaction?
What is rate constant of a first order reaction if $60 \%$ reactant decompose in 45 minute?
Half life of a zero order reaction is directly proportional to ___________
What time is required for 100 g of reactant to reduce to 25 g in a first order reaction having half life 5760 year?
Which of the following statements is correct about zero order reaction?
For a reaction, $$2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$$
$\mathrm{N}_2 \mathrm{O}_5$ disappears at a rate of $0.06 \mathrm{~mol~dm}^{-3} \mathrm{~s}^{-1}$ What is rate of $\mathrm{NO}_{2(\mathrm{~g})}$ formation?
What is the value of slope, if $\log _{10} \mathrm{~K}$ (y-axis) is plotted versus $1 / \mathrm{T}$ ( $x$-axis) for Arrhenius equation?
For the reaction, $A+3 B \longrightarrow 2 C$
rate of consumption of A is $1.4 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~sec}^{-1}$. Calculate rate of formation of C ?
In a first order reaction if concentartion of reactant drops from $0.8 \mathrm{~mol} \mathrm{~L}^{-1}$ to $0.4 \mathrm{~mol} \mathrm{~L}^{-1}$ in 15 minute. What is the time required to drop concentration from $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ to 0.025 mol $\mathrm{L}^{-1}$.
Calculate the time required for reactant to decrease the concentration from $100 \%$ to $20 \%$, if rate constant of first order reaction is 0.02303 hours $^{-1}$.
What is the rate of formation of $\mathrm{O}_2$ for the reaction stated below?
$$\begin{aligned} & 2 \mathrm{~N}_2 \mathrm{O}_{5(8)} \longrightarrow 4 \mathrm{NO}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \\ & {\left[\frac{\mathrm{d}\left[\mathrm{~N}_2 \mathrm{O}_5\right]}{\mathrm{dt}}=0.02 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right]} \end{aligned}$$
Rate law for the reaction $2 \mathrm{NO}+\mathrm{Cl}_2 \rightarrow 2 \mathrm{NOCl}$ is rate $=\mathrm{k}[\mathrm{NO}]^2\left[\mathrm{Cl}_2\right]$. When will the value of k increase?
Calculate the rate constant of the first order reaction if $$80 \%$$ of the reactant decomposes in 60 minutes.
What is the value of rate constant for first order reaction if slope for the graph of rate versus concentration is $$2.5 \times 10^{-3}$$ ?
The rate law for the reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product is rate $$=\mathrm{k}[\mathrm{A}][\mathrm{B}]$$. When will the rate of reaction increase by factor two?
Find the rate law for the reaction, $$\mathrm{CHCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CCl}_{4(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})}$$ if order of reaction with respect to $$\mathrm{CHCl}_{\mathrm{a}(\mathrm{g})}$$ is one and $$\frac{1}{2}$$ with $$\mathrm{Cl}_{2(\mathrm{~g})}$$.
The rate for reaction $$2 \mathrm{~A}+\mathrm{B} \rightarrow$$ product is $$6 \times 10^{-4} \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$$ Calculate the rate constant if the reaction is first order in $$\mathrm{A}$$ and zeroth order in $$\mathrm{B}$$. [Given $$[\mathrm{A}]=[\mathrm{B}]=0.3 \mathrm{M}]$$
Calculate half life of first order reaction if rate constant of reaction is $$2.772 \times 10^{-3} \mathrm{~s}^{-1}$$
Which from following statements about rate constant is NOT true?
For the reaction,
$$\mathrm{CH}_3 \mathrm{Br}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{CH}_3 \mathrm{OH}(a q)+\mathrm{Br}^{-}(a q),$$
The rate law is rate $$=k\left[\mathrm{CH}_3 \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$$. What is change in rate of reaction if concentration of both reactants is doubled?
For the reaction, $$2 A+2 B \longrightarrow 2 C+D$$, the rate law is expressed as rate $$=k[A]^2[B]$$. Calculate the rate constant if rate of reaction is $$0.24 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$$.
[[$$A$$]$$=0.5 \mathrm{M}$$ and $$[B]=0.2 \mathrm{M}$$]
Find the rate of formation of $$\mathrm{NO}_{2(\mathrm{~g})}$$ in the following reaction.
$$\begin{aligned} & 2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \\ & {\left[\frac{-\mathrm{d}\left[\mathrm{N}_2 \mathrm{O}_5\right]}{\mathrm{dt}}=0.02 \mathrm{~mol} \mathrm{~dm}^{-3}\right]} \end{aligned}$$
Calculate the rate constant of the first order reaction if $$20 \%$$ of the reactant decomposes in 15 minutes.
Which from following is the slope of the graph of $$[\mathrm{A}]_{\mathrm{t}}$$ versus time for zero order reaction?
A first order reaction takes 23.03 minutes for $$20 \%$$ decomposition. Calculate its rate constant.
The rate law for the reaction $$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$$ at $$25^{\circ} \mathrm{C}$$ is given by rate $$=k[A][B]^2$$. Calculate the rate of reaction if rate constant at same temperature is $$6.25 \mathrm{~mol}^{-2} \mathrm{~dm}^6 \mathrm{~s}^{-1}[[\mathrm{~A}]=1 \mathrm{M},[\mathrm{B}]=0.2 \mathrm{M}]$$
Calculate the time needed for reactant to decompose $$99.9 \%$$ if rate constant of first order reaction is 0.576 minute$$^{-1}$$.
Calculate the rate constant of first order reaction if half life of reaction is 40 minutes.
Identify rate law expression for $$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NOCl}_{(\mathrm{g})}$$ if the reaction is second order in $$\mathrm{NO}$$ and first order in $$\mathrm{Cl}_2$$.
For a reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product, if $$[\mathrm{A}]$$ is doubled keeping $$[\mathrm{B}]$$ constant, the rate of reaction doubles. Calculate the order of reaction with respect to A.
Calculate the rate constant of the first order reaction if $$80 \%$$ of the reactant reacted in 15 minute.
Identify the expression for average rate for following reaction.
$$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$$
For an elementary reaction
$$2 \mathrm{~A}+\mathrm{B} \longrightarrow 3 \mathrm{C}$$
rate of appearance of $$\mathrm{C}$$ is $$1.3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$, the rate of disappearance of $$\mathrm{A}$$ is:
Slope of the graph between $$\log \frac{[\mathrm{A}]_0}{[\mathrm{~A}]_{\mathrm{t}}}$$ (y axis) and time ( $$x$$ axis) for first order reaction is equal to:
What is half life time of a first order reaction if initial conc. of reactant is $$0.01 \mathrm{~mol} \mathrm{~L}^{-1}$$ and rate of reaction is $$0.00352 \mathrm{~mol} \mathrm{~L}^{-1}$$ minute $$^{-1}$$ ?
Find the average rate of formation of $$\mathrm{NO}_{2(\mathrm{~g})}$$, in following reaction.
$$\begin{aligned} & 2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \\ & {\left[-\frac{\Delta\left[\mathrm{N}_2 \mathrm{O}_5\right]}{\Delta \mathrm{t}}\right]=x \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}} \end{aligned}$$
Calculate the rate constant for the first order reaction, $$\mathrm{A} \rightarrow \mathrm{B}$$ if the rate of reaction is $$5.4 \times 10^{-6} \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$$ and $$[\mathrm{A}]=0.3 \mathrm{M}$$.
Time required for $$90 \%$$ completion of a first order reaction is '$$x$$' minute. Calculate the time required to complete $$99.9 \%$$ of the reaction at same temperature.
For the reaction, $$3 \mathrm{~I}+\mathrm{S}_2 \mathrm{O}_8^{2-} \rightarrow \mathrm{I}_3^{-}+2 \mathrm{SO}_4^{2-}$$, at a particular time $$\mathrm{t}, \frac{\mathrm{d}\left[\mathrm{SO}_4^{2-}\right]}{\mathrm{dt}}$$ is $$2.2 \times 10^{-2} \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$$. What is the value of $$-\frac{\mathrm{d}\left[\mathrm{I}^{-}\right]}{\mathrm{dt}}$$ ?
What is the half life of a first order reaction if rate constant is $$4.2 \times 10^{-2}$$ per day?
The reaction, $$3 \mathrm{ClO}^{-} \rightarrow \mathrm{ClO}_3^{-}+2 \mathrm{Cl}^{-}$$ occurs in two steps:
i. $$\quad 2 \mathrm{ClO}^{-} \rightarrow \mathrm{ClO}_2^{-}+\mathrm{Cl}^{-}$$
ii. $$\quad \mathrm{ClO}_2^{-}+\mathrm{ClO}^{-} \rightarrow \mathrm{ClO}_3^{-}+\mathrm{Cl}^{-}$$,
the reaction intermediate is:
Calculate the rate constant of first order reaction if the concentration of the reactant decreases by $$90 \%$$ in 30 minutes.
The rate law for the reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product is given by rate $$=k[A][B]$$ Calculate $$[A]$$ if rate of reaction and rate constant are $$0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$$ and $$6.25 \mathrm{~mol}^{-1} \mathrm{dm}^3 \mathrm{~s}^{-1}$$ respectively $$\left[[\mathrm{B}]=0.25 \mathrm{~mol} \mathrm{dm}^{-3}\right]$$
Find the average rate of formation $$\mathrm{O}_{2(\mathrm{~g})}$$ in the following reaction.
$$\begin{aligned} & 2 \mathrm{NO}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \\ & {\left[-\frac{\Delta[\mathrm{NO}]}{\Delta \mathrm{t}}\right]=x \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}} \end{aligned}$$
Which from following is the slope of the graph of rate versus concentration of the reactant for first order reaction?
Calculate the amount of reactant in percent that remains after 60 minutes involved in first order reaction. $$\left(\mathrm{k}=0.02303\right.$$ minute $$\left.^{-1}\right)$$
The rate for reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product, is $$1.8 \times 10^{-2} \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$$. Calculate the rate constant if the reaction is second order in $$\mathrm{A}$$ and first order in $$\mathrm{B}$$. ($$[\mathrm{A}]=0.2 \mathrm{M} ;[\mathrm{B}]=0.1 \mathrm{M}$$)
For the reaction $$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$$, rate of disappearance of $$\mathrm{N}_{2(\mathrm{~g})}$$ is $$2.22 \times 10^{-3} \mathrm{~mol} \mathrm{~dm}^{-3}$$. What is the rate of appearance of $$\mathrm{NH}_{3(\mathrm{~g})}$$ ?
Find the rate constant of first order reaction in second having half life of 2.5 hours.
If rate of reaction is given as
$$\frac{1}{3} \frac{\mathrm{d}[\mathrm{x}]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{d}[\mathrm{y}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{Z}]}{\mathrm{dt}}$$,
the reaction can be represented as
In a first reaction 60% of reactant decomposes in 4.606 min. What is half life of reaction? (k = 0.1989 min$$^{-1}$$)
For the reaction, $$2 \mathrm{~A}+\mathrm{B} \rightarrow 2 \mathrm{C}$$, rate of disappearance of $$\mathrm{A}$$ is $$0.076 \mathrm{~mol} \mathrm{~s}^{-1}$$. What is the rate of disappearance of $$\mathrm{B}$$ ?
Half-life and rate constant for first order reaction are related by equation,
If decomposition of hydrogen peroxide is a first order reaction, it's rate law equation can be represented as
A reaction is first order with respective to $$\mathrm{A}$$ and second order with respective to $$\mathrm{B}$$. What is the effect on reaction rate if concentration of B is increased 3 times?
For the reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product, rate of reaction is $$3.6 \times 10^{-2} \mathrm{mol~dm}^{-3} \mathrm{sec}^{-1}$$. When $$[\mathrm{A}]=0.2 \mathrm{~mol} \mathrm{dm}^{-3}$$ and $$[\mathrm{B}]=0.1 \mathrm{~mol} \mathrm{~dm}^{-3}$$, find rate constant of reaction if it is second order with respective to both reactants.
Which of the following equations represents integrated rate law for zero order reaction?
Ammonia and oxygen react at high temperature as
$$4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_2 \mathrm{O}_{(\mathrm{g})} \text {. }$$
If rate of formation of $$\mathrm{NO}_{(\mathrm{g})}$$ is $$3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$ then rate of disappearance of ammonia is
Which of the following represents integrated rate law equation for gas phase first order reaction, $$\mathrm{A}_{(\mathrm{g})} \rightarrow \mathrm{B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}$$
if $$\mathrm{P}_{\mathrm{i}}=$$ initial pressure of $$\mathrm{A}$$
$$\quad\mathrm{P}=$$ total pressure of reaction mixture at time ?
The rate law equation for a reaction between $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ is $$\mathrm{r}=\mathrm{k}[\mathrm{A}][\mathrm{B}][\mathrm{C}]^2$$, what will be ne rate of reaction if concentration of both $$\mathrm{A}$$ and $$\mathrm{B}$$ are doubled.
Time required for $$90 \%$$ completion of a first order reaction is $$t$$. What is the time required for completion of $$99 \%$$ reaction?
The order of reaction for which the units of rate constant are $$\mathrm{mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$$ is
What is rate constant of a first order reaction if 0.08 mole of reactant reduces to 0.02 mole in 23.03 minute?
Which of the following statements is NOT true for a reaction having rate law $$\mathrm{r}=\mathrm{k}\left[\mathrm{H}_2\right]\left[\mathrm{I}_2\right]$$ ?
For the reaction $$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$$, what is the relation between $$\frac{\mathrm{d}\left[\mathrm{N}_2\right]}{\mathrm{dt}}$$ and $$\frac{\mathrm{d}\left[\mathrm{H}_2\right]}{\mathrm{dt}}$$ ?
For a reaction $$\mathrm{A} \rightarrow$$ product, rate constant is $$2 \times 10^{-2} \mathrm{~s}^{-1}$$. The initial concentration of $$\mathrm{A}$$ is 1.0 mol dm$${ }^{-3}$$. What is the value of $$\log \frac{1}{[\mathrm{~A}]_{\mathrm{t}}}$$ after 100 seconds?
Identify order of reaction if it's rate constant is x sec$$^{-1}$$.
For the reaction $$2 \mathrm{~A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}$$ if $$\mathrm{r}=\mathrm{k}[\mathrm{A}]^2[\mathrm{~B}]^0$$, then rate of reaction is
For a first order reaction, intercept of the graph between $$\mathrm{\log\frac{[A]_o}{[A]_t}}$$(Y-axis) and conc. (X-axis) is equal to
What is the half-life of a first order reaction if time required to decrease concentration of reactant from 1.0 M to 0.25 M is 10 hour?
What is the rate of disappearance of B in following reaction? $$2 \mathrm{A}+\mathrm{B} \rightarrow 3 \mathrm{C}$$, if rate of appearance of $$\mathrm{C}$$ is $$1.3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$.
What is the rate of appearance of $$\mathrm{Z}$$ in following reaction? $$3 \mathrm{x} \rightarrow 2 \mathrm{y}+\mathrm{z}$$, if rate of disappearance of $$\mathrm{x}$$ is $$0.072 \mathrm{~mol} \mathrm{~s}^{-1}$$
Slope of the graph between rate ( $$\mathrm{Y}$$-axis) and $$[\mathrm{A}](\mathrm{X}$$-axis) for the first order reaction is equal to
In a first order reaction, concentration of reactant is reduced to (1/8)th of concentration in 23.03 minutes. What is half-life period of reaction?
For the reaction $$2 \mathrm{NO}+\mathrm{Cl}_2 \rightarrow 2 \mathrm{NOCl}$$
What is the relation between $$\frac{\mathrm{d}[\mathrm{NO}]}{\mathrm{dt}}$$ and $$\frac{\mathrm{d}[\mathrm{NOCl}]}{\mathrm{dt}}$$ ?
In a first order reaction concentration of reactant decreases from 20 m mol to 10 m mol in 1.151 min. What is rate constant?
Which type of reaction order is followed by radioactive processes?
For the reaction, $$3 \mathrm{I}_{(\mathrm{aq})}^{-}+\mathrm{S}_2 \mathrm{O}_{8(\mathrm{aq})}^{2-} \longrightarrow \mathrm{I}_{3(\mathrm{aq})}^{-}+2 \mathrm{SO}_{4(\mathrm{aq})}^{2-}$$, rate of formation of $$\mathrm{SO}_4^{2-}$$ is $$0.022 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{sec}^{-1}$$. What is rate of formation of $$\mathrm{I}_{3(\mathrm{aq})}^{-}$$ ?
Instantaneous rate of a reaction is $$ - {1 \over 2}{{d[x]} \over {dt}} = - {{d[y]} \over {dt}} = {1 \over 2}{{d[z]} \over {dt}}$$, identify the reaction.
Half life for a first order reaction is 6.93 hour. What is the time required for 80% completion of the reaction?
For first order reaction the concentration of reactant decreases from 0.2 to 0.1 M in 100 minutes. What is the rate constant of the reaction?
A first order reaction is $25 \%$ completed in 40 minutes. What is the rate constant $k$ for the reaction?
A first order reaction has a rate constant 0.00813 min$$^{-1}$$. How long will it take for 60% completion?
What is the value of rate constant of first order reaction, if it takes 15 minutes for consumption of $$20 \%$$ of reactants?
If concentration of reactant '$$A$$' is increased by 10 times the rate of reaction becomes 100 times. What is the order of reaction, if rate law is, rate $$=k[A]^x$$ ?
A first order reaction has rate constant $$1 \times 10^{-2} \mathrm{~s}^{-1}$$. What time will, it take for $$20 \mathrm{~g}$$ or reactant to reduce to $$5 \mathrm{~g}$$ ?
The integrated rate equation for first order reaction, $A \rightarrow$ product, is
For the elementary reaction, $3 \mathrm{H}_2(g)+\mathrm{N}_2(g) \longrightarrow 2 \mathrm{NH}_3(g)$ identify the correct relation among the following relations:
The activation energy of a reaction is zero. Its rate constant at 280 K is $1.6 \times 10^{-6} \mathrm{~s}^{-1}$, the rate constant at 300 K is
For a chemical reaction rate law is, rate $=k[A]^2[B]$. If $[A]$ is doubled at constant $[B]$, the rate of reaction
In the reaction, $\mathrm{H}_2 \mathrm{O}_2(a q) \xrightarrow{\mathrm{I_{(aq)}^-}} \mathrm{H}_2 \mathrm{O}(I)+\frac{1}{2} \mathrm{O}_2(g)$ iodide ion acts as
For the elementary reaction $2 \mathrm{SO}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_3(g)$, identify the correct among the following relations
Which among the following reaction is an example of a zero order reaction?