1
MHT CET 2021 22th September Morning Shift
+2
-0

Let

$$f(x)\matrix{ { = |x| + 3,} & {if\,x \le - 3} \cr { = - 2x,} & {if\, - 3 < x < 3} \cr { = 6x - 2,} & {if\,x \ge 3} \cr }$$, then

A
$$f(x)$$ is discontinuous at both $$x=-3$$ as well as $$x=3$$
B
$$f(x)$$ is continuous at $$x=-3$$ but discontinuous at $$x=3$$
C
$$f(x)$$ is continuous at $$x=-3$$ as well as $$x=3$$
D
$$f(x)$$ of discontinuous at $$x=-3$$ but $$f(x)$$ is continuous at $$x=3$$
2
MHT CET 2021 22th September Morning Shift
+2
-0

$$\lim _\limits{x \rightarrow 0} \frac{\cos (m x)-\cos (n x)}{x^2}=$$

A
$$\frac{m^2-n^2}{2}$$
B
$$m^2-n^2$$
C
$$\frac{n^2-m^2}{2}$$
D
$$n^2-m^2$$
3
MHT CET 2021 21th September Evening Shift
+2
-0

\begin{aligned} & \text { } f(x)=\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x} \text {, if } 1 \leq x<0 \\ & =\frac{2 x+1}{x-2} \quad \text {, if } 0 \leq x \leq 1 \\ \end{aligned}

is continuous in the interval $$[-1,1]$$, then $$p=$$

A
1
B
$$-$$1
C
$$\frac{-1}{2}$$
D
$$\frac{1}{2}$$
4
MHT CET 2021 21th September Evening Shift
+2
-0

If $$\lim _\limits{x \rightarrow 5} \frac{x^k-5^k}{x-5}=500$$, then the value of $$k$$, where $$k \in N$$ is

A
5
B
3
C
4
D
6
EXAM MAP
Medical
NEET