1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\left\{\begin{array}{cc}\frac{a}{2}(x-|x|) & , \\ 0, & \text { for } x<0 \\ 0, & \text { for } x=0 \\ b x^2 \sin \left(\frac{1}{x}\right) & \text { for } x>0\end{array}\right.$

is continuous at $x=0$, then

A
a is any real value and b is any real value
B
a is only rational value and b is any real value
C
a is only irrational value and b is any real value
D
a is only rational value and b is only rational value
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $(3.978)^{\frac{3}{2}}$ is

A
7.934
B
8.934
C
7.022
D
8.866
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\left(\frac{1+\tan x}{1+\sin x}\right)^{\operatorname{cosec} x}$ is continuous at $x=0$ then $f(0)$ is equal to

A
0
B
1
C
$\mathrm{e}$
D
$\mathrm{\frac{1}{e}}$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 0} \frac{9^x-4^x}{x\left(9^x+4^x\right)}=$$

A
$\log \left(\frac{3}{2}\right)$
B
$\frac{1}{2} \log \left(\frac{3}{2}\right)$
C
$2 \log \left(\frac{3}{2}\right)$
D
$2 \log \left(\frac{9}{4}\right)$
MHT CET Subjects
EXAM MAP