1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=2 \hat{i}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ are two vectors, then the angle between the vectors $3 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}$ and $5 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}$ is

A
$\cos ^{-1}\left(\frac{10}{19}\right)$
B
$\cos ^{-1}\left(\frac{11}{19}\right)$
C
$\cos ^{-1}\left(\frac{13}{19}\right)$
D
$\cos ^{-1}\left(\frac{14}{19}\right)$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ is perpendicular to $\bar{b}$ and $\bar{c},|\bar{a}|=2$, $|\overline{\mathrm{b}}|=3,|\overline{\mathrm{c}}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{3}$, then $\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]=$

A
$4 \sqrt{3}$
B
$6 \sqrt{3}$
C
$24 \sqrt{3}$
D
$12 \sqrt{3}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=2 \hat{i}-\hat{j}+\hat{k}, \bar{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\bar{c}=4 \hat{i}-2 \hat{j}+\hat{k}$, then the unit vector in the direction of $3 \overline{\mathrm{a}}+\overline{\mathrm{b}}-2 \overline{\mathrm{c}}$ is

A
$\frac{1}{\sqrt{6}}(-\hat{i}+2 \hat{j}-\hat{k})$
B
$\frac{1}{\sqrt{6}}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
C
$\frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}-\hat{k})$
D
$\frac{1}{\sqrt{6}}(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \quad \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\bar{c}=3 \hat{i}+\hat{j}$ are the vectors such that $\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$ is perpendicular to $\bar{c}$, then value of $\lambda$ is

A
6
B
$-$6
C
8
D
$-$8
MHT CET Subjects
EXAM MAP