The slope of tangent at $(x, y)$ to a curve passing through $\left(1, \frac{\pi}{4}\right)$ is $\frac{y}{x}-\cos ^2 \frac{y}{x}$, then the equation of curve is
The function $y(x)$ represented by $x=\sin t$, $y=a e^{t \sqrt{2}}+b e^{t \sqrt{2}}, t \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ satisfies the equation $\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}=\mathrm{k} y$, then the value of k is k is
The rate of growth of bacteria in a culture is proportional to the number of bacteria present and the bacteria count is 1000 at $\mathrm{t}=0$. The number of bacteria is increased by $20 \%$ in 2 hours. If the population of bacteria is 2000 after $\frac{\mathrm{k}}{\log \left(\frac{6}{5}\right)}$ hours, then $\left(\frac{\mathrm{k}}{\log 2}\right)^2$ is
The general solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=y \tan x-y^2 \sec x$ is