Matrices and Determinants · Mathematics · MHT CET
MCQ (Single Correct Answer)
Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ and $A^{-1}=\alpha \mathrm{I}+\beta \mathrm{A}, \alpha, \beta \in \mathbb{R}$, I is the identity matrix of order 2 , then $4(\alpha-\beta)$ is
If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \quad \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}$, $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ and $\left[\begin{array}{lll}3 \bar{a}+\bar{b} & 3 \bar{b}+\bar{c} & 3 \bar{c}+\bar{a}\end{array}\right]=\lambda\left|\begin{array}{lll}\overline{\mathrm{a}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{b}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{c}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{k}}\end{array}\right|,$ then the value of $\lambda$ is
Let $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right], x \in \mathbb{R}^{+}$and $A^4=\left[a_{i j}\right]_2$. If $a_{11}=109$, then $\left(A^4\right)^{-1}=$
If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $A \cdot \operatorname{adj} A=A A^T$, then $5 a+b$ is equal to
Let A and B be $3 \times 3$ real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $\left(A^2 B^2-B^2 A^2\right) X=O$. where $X$ is $3 \times 1$ column matrix of unknown variables and $O$ is a $3 \times 1$ null matrix, has
If $A\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ then $\left(A^2-5 A\right)^{-1}$ is
Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$ such that $\mathrm{AX}=\mathrm{B}$, then $\mathrm{X}=$
If $\mathrm{w}=\frac{-1-\mathrm{i} \sqrt{3}}{2}$ where $\mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{array}\right|$ is
Inverse of the matrix $\left[\begin{array}{cc}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right]$ is
If $A+B=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ where $A$ is symmetric and $B$ is skew-symmetric matrix, then the matrix $\left(A^{-1} B+A B^{-1}\right)$ at $\theta=\frac{\pi}{6}$ is given by
For the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$, the matrix of cofactors is
If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & 3 \\ 3 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 0 & b \\ 7 & -1 & -2 \\ c & 1 & 1\end{array}\right]$ and if matrix $B$ is the inverse of matrix $A$, then value of $4 a+2 b-c$ is
Let $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}_2$, (where $\mathrm{I}_2$ is unit matrix of order 2), then
Suppose A is any $3 \times 3$ non-singular matrix and $(\mathrm{A}-3 \mathrm{I})(\mathrm{A}-5 \mathrm{I})=0$ where $\mathrm{I}=\mathrm{I}_3$ and $\mathrm{O}=\mathrm{O}_3$. Here $\mathrm{O}_3$ represent zero matrix of order 3 and $\mathrm{I}_3$ is an identity matrix of order 3 . If $\alpha A+\beta A^{-1}=4 I$, then $\alpha+\beta$ is equal to
For the system $x-y+z=4,2 x+y-3 z=0$, $x+y+z=2$, the values of $x, y, z$ respectively are given by
If $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$, then $A^{-1}=$
Let $X=\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array}\right], \mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$. If $A X=B$, then the value of $2 a-3 b+4 c$ will be
If $A=\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$, then $A^{-1}$ is
If $$A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}1 & 1 \\ 4 & -1\end{array}\right]$$, then $$(A+B)^{-1}$$ is
Let $$A=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right].$$ If $$B=I-{ }^3 C_1(\operatorname{adj} A)+{ }^3 C_2(\operatorname{adj} A)^2-{ }^3 C_3(\operatorname{adj} A)^3$$, then the sum of all elements of the matrix B is
If $$A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$$, then $$A^T \cdot A^{-1}=$$
If $$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$ and $$A_{i j}$$ is a cofactor of $$a_{i j}$$ then the value of $$a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}$$ is
If $$A=\left[\begin{array}{cc}2 a & -3 b \\ 3 & 2\end{array}\right]$$ and $$A \cdot \operatorname{adj} A=A A^T$$, then $$2 a+3 b$$ is
If the matrix $$\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$$ and $$\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}$$, when $$I$$ is a unit matrix of order 2 , then the value of $$2 x+3 y$$ is
If $$\mathrm{A}=\left[\begin{array}{ll}\mathrm{i} & 1 \\ 1 & 0\end{array}\right]$$ where $$\mathrm{i}=\sqrt{-1}$$ and $$\mathrm{B}=\mathrm{A}^{2029}$$, then $$\mathrm{B}^{-1}=$$
If $$P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and $$|A|=4$$, then value of $$\alpha$$ is
Let $$\omega \neq 1$$ be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form $$\left[\begin{array}{ccc}1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1\end{array}\right]$$ where each of $$a, b$$ and $$c$$ is either $$\omega$$ or $$\omega^2$$, then the number of distinct matrices in the set $$\mathrm{S}$$ is
If $$B=\left[\begin{array}{ccc}3 & \alpha & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix $$\mathrm{A}$$ and $$|\mathrm{A}|=4$$, then $$\alpha$$ is equal to
If $$B=\left[\begin{array}{lll}1 & \alpha & 2 \\ 1 & 2 & 2 \\ 2 & 3 & 3\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix A and $$|A|=5$$, then $$\alpha$$ is equal to
If $$\left|\begin{array}{ccc}\cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B\end{array}\right|=0$$, then the value of $$B$$ is
Let $$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1\end{array}\right], B=\left[\begin{array}{c}6 \\ 11 \\ 0\end{array}\right]$$ and $$X=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$$, if $$\mathrm{AX}=\mathrm{B}$$, then the value of $$2 \mathrm{a}+\mathrm{b}+2 \mathrm{c}$$ is
If $$A=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$$, then the inverse of $$\left(2 A^2+5 A\right)$$ is
If $$A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 3\end{array}\right]$$ and $$B=\left[\begin{array}{ll}2 & 3 \\ 1 & 2 \\ 1 & 2\end{array}\right]$$, then $$(A B)^{-1}=$$
Given $$A=\left[\begin{array}{ccc}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$$, if $$x y z=60$$ and $$8 x+4 y+3 z=20$$, then $$A$$.(adjA)
If $$\mathrm{A}=\left[\begin{array}{cc}\lambda & \mathrm{i} \\ \mathrm{i} & -\lambda\end{array}\right]$$ and $$\mathrm{A}^{-1}$$ does not exist, then $$\lambda=$$ (where $$\mathrm{i}=\sqrt{-1}$$)
If $$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$, and $$A(\operatorname{adj} A)=k I$$, then the value of $$(k+1)^4$$ is
IF $$A X=B$$, where $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$$, then $$2 x+y-z=$$
$$\text { If } A=\left[\begin{array}{ll} 2 & -2 \\ 2 & -3 \end{array}\right], B=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \text {, then }\left(B^{-1} A^{-1}\right)^{-1}=\text { ? }$$
If $$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & a \\ 2 & 4 & 7\end{array}\right]$$ and $$B=\left[\begin{array}{ccc}13 & 2 & b \\ -3 & -1 & 2 \\ -2 & 0 & 1\end{array}\right]$$ where matrix B is inverse of matrix A, then the value of a and b are
For a $$3 \times 3$$ matrix $$\mathrm{A}$$, if $$\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{ccc}-10 & 0 & 0 \\ 0 & -10 & 2 \\ 0 & 0 & -10\end{array}\right]$$, then the value of determinant of A is
If $$A=\left[\begin{array}{ccc}5 & 6 & 3 \\ -4 & 3 & 2 \\ -4 & -7 & 3\end{array}\right]$$, then cofactors of all elements of second row are respectively.
Which of the following matrices are invertible?
$$\begin{aligned} & \mathrm{A}=\left[\begin{array}{cc} 2 & 3 \\ 10 & 15 \end{array}\right], \mathrm{B}=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 2 & 3 \end{array}\right], \mathrm{C}=\left[\begin{array}{lll} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{array}\right], \mathrm{D}=\left[\begin{array}{lll} 2 & 4 & 2 \\ 1 & 1 & 0 \\ 1 & 4 & 5 \end{array}\right] \end{aligned}$$
If $$A=\left[\begin{array}{rr}2 & 3 \\ 5 & -2\end{array}\right]$$ and $$A^{-1}=K A$$, then $$K$$ is
If $$\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$, then $$\mathrm{A}(\operatorname{adj} \mathrm{A})=$$
If $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 3 & 3 & -4\end{array}\right], B=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$$ and $$X=\left[\begin{array}{l}x_1 \\ x_2 \\ x_3\end{array}\right]$$ such that $$A X=B$$, then the value of $$x_1+x_2+x_3=$$
If $$A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$$ and $$A$$ adj $$A=A A^T$$, then $$5 a+b=$$
For an invertible matrix $$A$$, if $$A(\operatorname{adj} A)=\left[\begin{array}{cc}20 & 0 \\ 0 & 20\end{array}\right]$$, then $$|A|=$$
If $$A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$$ and $$B=\left[\begin{array}{cc}1 & 2 \\ -3 & 1 \\ 0 & 2\end{array}\right]$$, then $$(A B)^{-1}$$
If $$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$$, then the value of determinant of $$A^{-1}$$ is
If $$A = \left[ {\matrix{ k & 2 \cr { - 2} & { - k} \cr } } \right]$$, then A$$^{-1}$$ does not exists if k =
The sum of three numbers is 6. Thrice the third number when added to the first number gives 7. On adding three times first number to the sum of second and third number we get 12. The product of these numbers is
If $$A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$, then $$\operatorname{adj} A=$$
If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$$ and $$A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 6 & 2 c \\ 5 & -3 & 1\end{array}\right]$$, then values of a and c are respectively
If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$, then $$A^{-1}=$$
If $$F(\propto)=\left[\begin{array}{ccc}\cos \propto & -\sin \propto & 0 \\ \sin \propto & \cos \propto & 0 \\ 0 & 0 & 1\end{array}\right]$$, where $$\propto \in R$$, then $$[F(\propto)]^{-1}=$$
If $$A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right], \operatorname{adj} A=\left[\begin{array}{ccc}5 & x & -2 \\ 1 & 1 & 0 \\ -2 & -2 & y\end{array}\right]$$, then value of $$x+y$$ is
$$\mathrm{A}^{-1}=\frac{-1}{2}\left[\begin{array}{cc}1 & -4 \\ -1 & 2\end{array}\right]$$, then $$2 A+I_2=\quad$$
where $$I_2$$ is a unit matrix of order 2
The co-factors of the elements of second column of $$\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 2 & 1 \\ -1 & 3 & 4\end{array}\right]$$ are
If $$A^{-1}=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 5 & 5\end{array}\right]$$, then $$A=$$
If $$A^{-1}=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$$ and $$B^{-1}=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$$, then $$(A B)^{-1}=$$
$$A(\propto)=\left[\begin{array}{cc}\cos \propto & \sin \propto \\ -\sin \propto & \cos \propto\end{array}\right]$$, then $$\left[A^2(\propto)\right]^{-1}=$$
If inverse of $$\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]$$ does not exist, then $$x=$$
If $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 1 & 2 & 1 \cr 3 & 2 & 6 \cr } } \right]$$ and A$$_{ij}$$ are cofactors of the elements a$$_{ij}$$ of A, then $${a_{11}}{A_{11}} + {a_{12}}{A_{12}} + {a_{13}}{A_{13}}$$ is equal to
If $A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]$ and $A^2-5 A-6 I=0$, then $A^{-1}=$
The cofactors of the elements of the first column of the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$ are
The matrix $$A=\left[\begin{array}{rrr}a & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2\end{array}\right]$$ is not invertible only if $$a=$$
If $$A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$$, then $$B^{-1} A^{-1}=$$
The sum of the cofactors of the elements of second row of the matrix $$\left[\begin{array}{rrr}1 & 3 & 2 \\ -2 & 0 & 1 \\ 5 & 2 & 1\end{array}\right]$$ is
If $$A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$$ and $$A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]$$, then the values of $$\alpha$$ and $$\beta$$ are, respectively.
If $A$ and $B$ are square matrices of order 3 such that $|A|=2,|B|=4$, then $|A(\operatorname{adj} B)|=\ldots$
If $A$ is non-singular matrix and $(A+I)(A-I)=0$ then $A+A^{-1}=$ .............
If $A=\left[\begin{array}{cc}1+2 i & i \\ -i & 1-2 i\end{array}\right]$, where $i=\sqrt{-1}$, then $A(\operatorname{adj} A)=\ldots$
If $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$ and $A=A^{-1}$, then $x=\ldots \ldots$
If $A$ is non-singular matrix such that $(A-2 l)(A-4 I)=0$ then $A+8 A^{-1}=$ ..........