Matrices and Determinants · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ and $A^{-1}=\alpha \mathrm{I}+\beta \mathrm{A}, \alpha, \beta \in \mathbb{R}$, I is the identity matrix of order 2 , then $4(\alpha-\beta)$ is

MHT CET 2024 16th May Evening Shift
2

If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \quad \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}$, $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ and $\left[\begin{array}{lll}3 \bar{a}+\bar{b} & 3 \bar{b}+\bar{c} & 3 \bar{c}+\bar{a}\end{array}\right]=\lambda\left|\begin{array}{lll}\overline{\mathrm{a}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{b}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{c}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{k}}\end{array}\right|,$ then the value of $\lambda$ is

MHT CET 2024 16th May Evening Shift
3

Let $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right], x \in \mathbb{R}^{+}$and $A^4=\left[a_{i j}\right]_2$. If $a_{11}=109$, then $\left(A^4\right)^{-1}=$

MHT CET 2024 16th May Morning Shift
4

If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $A \cdot \operatorname{adj} A=A A^T$, then $5 a+b$ is equal to

MHT CET 2024 15th May Evening Shift
5

Let A and B be $3 \times 3$ real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $\left(A^2 B^2-B^2 A^2\right) X=O$. where $X$ is $3 \times 1$ column matrix of unknown variables and $O$ is a $3 \times 1$ null matrix, has

MHT CET 2024 15th May Morning Shift
6

If $A\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ then $\left(A^2-5 A\right)^{-1}$ is

MHT CET 2024 11th May Evening Shift
7

Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$ such that $\mathrm{AX}=\mathrm{B}$, then $\mathrm{X}=$

MHT CET 2024 11th May Morning Shift
8

If $\mathrm{w}=\frac{-1-\mathrm{i} \sqrt{3}}{2}$ where $\mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{array}\right|$ is

MHT CET 2024 10th May Evening Shift
9

Inverse of the matrix $\left[\begin{array}{cc}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right]$ is

MHT CET 2024 10th May Evening Shift
10

If $A+B=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ where $A$ is symmetric and $B$ is skew-symmetric matrix, then the matrix $\left(A^{-1} B+A B^{-1}\right)$ at $\theta=\frac{\pi}{6}$ is given by

MHT CET 2024 10th May Morning Shift
11

For the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$, the matrix of cofactors is

MHT CET 2024 9th May Evening Shift
12

If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & 3 \\ 3 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 0 & b \\ 7 & -1 & -2 \\ c & 1 & 1\end{array}\right]$ and if matrix $B$ is the inverse of matrix $A$, then value of $4 a+2 b-c$ is

MHT CET 2024 9th May Morning Shift
13

Let $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}_2$, (where $\mathrm{I}_2$ is unit matrix of order 2), then

MHT CET 2024 4th May Evening Shift
14

Suppose A is any $3 \times 3$ non-singular matrix and $(\mathrm{A}-3 \mathrm{I})(\mathrm{A}-5 \mathrm{I})=0$ where $\mathrm{I}=\mathrm{I}_3$ and $\mathrm{O}=\mathrm{O}_3$. Here $\mathrm{O}_3$ represent zero matrix of order 3 and $\mathrm{I}_3$ is an identity matrix of order 3 . If $\alpha A+\beta A^{-1}=4 I$, then $\alpha+\beta$ is equal to

MHT CET 2024 4th May Morning Shift
15

For the system $x-y+z=4,2 x+y-3 z=0$, $x+y+z=2$, the values of $x, y, z$ respectively are given by

MHT CET 2024 3rd May Evening Shift
16

If $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$, then $A^{-1}=$

MHT CET 2024 3rd May Morning Shift
17

Let $X=\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array}\right], \mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$. If $A X=B$, then the value of $2 a-3 b+4 c$ will be

MHT CET 2024 2nd May Evening Shift
18

If $A=\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$, then $A^{-1}$ is

MHT CET 2024 2nd May Morning Shift
19

If $$A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}1 & 1 \\ 4 & -1\end{array}\right]$$, then $$(A+B)^{-1}$$ is

MHT CET 2023 14th May Evening Shift
20

Let $$A=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right].$$ If $$B=I-{ }^3 C_1(\operatorname{adj} A)+{ }^3 C_2(\operatorname{adj} A)^2-{ }^3 C_3(\operatorname{adj} A)^3$$, then the sum of all elements of the matrix B is

MHT CET 2023 14th May Morning Shift
21

If $$A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$$, then $$A^T \cdot A^{-1}=$$

MHT CET 2023 13th May Evening Shift
22

If $$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$ and $$A_{i j}$$ is a cofactor of $$a_{i j}$$ then the value of $$a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}$$ is

MHT CET 2023 13th May Morning Shift
23

If $$A=\left[\begin{array}{cc}2 a & -3 b \\ 3 & 2\end{array}\right]$$ and $$A \cdot \operatorname{adj} A=A A^T$$, then $$2 a+3 b$$ is

MHT CET 2023 12th May Evening Shift
24

If the matrix $$\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$$ and $$\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}$$, when $$I$$ is a unit matrix of order 2 , then the value of $$2 x+3 y$$ is

MHT CET 2023 12th May Morning Shift
25

If $$\mathrm{A}=\left[\begin{array}{ll}\mathrm{i} & 1 \\ 1 & 0\end{array}\right]$$ where $$\mathrm{i}=\sqrt{-1}$$ and $$\mathrm{B}=\mathrm{A}^{2029}$$, then $$\mathrm{B}^{-1}=$$

MHT CET 2023 11th May Evening Shift
26

If $$P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and $$|A|=4$$, then value of $$\alpha$$ is

MHT CET 2023 11th May Morning Shift
27

Let $$\omega \neq 1$$ be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form $$\left[\begin{array}{ccc}1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1\end{array}\right]$$ where each of $$a, b$$ and $$c$$ is either $$\omega$$ or $$\omega^2$$, then the number of distinct matrices in the set $$\mathrm{S}$$ is

MHT CET 2023 11th May Morning Shift
28

If $$B=\left[\begin{array}{ccc}3 & \alpha & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix $$\mathrm{A}$$ and $$|\mathrm{A}|=4$$, then $$\alpha$$ is equal to

MHT CET 2023 10th May Evening Shift
29

If $$B=\left[\begin{array}{lll}1 & \alpha & 2 \\ 1 & 2 & 2 \\ 2 & 3 & 3\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix A and $$|A|=5$$, then $$\alpha$$ is equal to

MHT CET 2023 10th May Morning Shift
30

If $$\left|\begin{array}{ccc}\cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B\end{array}\right|=0$$, then the value of $$B$$ is

MHT CET 2023 9th May Evening Shift
31

Let $$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1\end{array}\right], B=\left[\begin{array}{c}6 \\ 11 \\ 0\end{array}\right]$$ and $$X=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$$, if $$\mathrm{AX}=\mathrm{B}$$, then the value of $$2 \mathrm{a}+\mathrm{b}+2 \mathrm{c}$$ is

MHT CET 2023 9th May Evening Shift
32

If $$A=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$$, then the inverse of $$\left(2 A^2+5 A\right)$$ is

MHT CET 2023 9th May Morning Shift
33

If $$A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 3\end{array}\right]$$ and $$B=\left[\begin{array}{ll}2 & 3 \\ 1 & 2 \\ 1 & 2\end{array}\right]$$, then $$(A B)^{-1}=$$

MHT CET 2022 11th August Evening Shift
34

Given $$A=\left[\begin{array}{ccc}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$$, if $$x y z=60$$ and $$8 x+4 y+3 z=20$$, then $$A$$.(adjA)

MHT CET 2022 11th August Evening Shift
35

If $$\mathrm{A}=\left[\begin{array}{cc}\lambda & \mathrm{i} \\ \mathrm{i} & -\lambda\end{array}\right]$$ and $$\mathrm{A}^{-1}$$ does not exist, then $$\lambda=$$ (where $$\mathrm{i}=\sqrt{-1}$$)

MHT CET 2021 24th September Evening Shift
36

If $$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$, and $$A(\operatorname{adj} A)=k I$$, then the value of $$(k+1)^4$$ is

MHT CET 2021 24th September Evening Shift
37

IF $$A X=B$$, where $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$$, then $$2 x+y-z=$$

MHT CET 2021 24th September Evening Shift
38

$$\text { If } A=\left[\begin{array}{ll} 2 & -2 \\ 2 & -3 \end{array}\right], B=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \text {, then }\left(B^{-1} A^{-1}\right)^{-1}=\text { ? }$$

MHT CET 2021 24th September Morning Shift
39

If $$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & a \\ 2 & 4 & 7\end{array}\right]$$ and $$B=\left[\begin{array}{ccc}13 & 2 & b \\ -3 & -1 & 2 \\ -2 & 0 & 1\end{array}\right]$$ where matrix B is inverse of matrix A, then the value of a and b are

MHT CET 2021 24th September Morning Shift
40

For a $$3 \times 3$$ matrix $$\mathrm{A}$$, if $$\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{ccc}-10 & 0 & 0 \\ 0 & -10 & 2 \\ 0 & 0 & -10\end{array}\right]$$, then the value of determinant of A is

MHT CET 2021 24th September Morning Shift
41

If $$A=\left[\begin{array}{ccc}5 & 6 & 3 \\ -4 & 3 & 2 \\ -4 & -7 & 3\end{array}\right]$$, then cofactors of all elements of second row are respectively.

MHT CET 2021 23rd September Evening Shift
42

Which of the following matrices are invertible?

$$\begin{aligned} & \mathrm{A}=\left[\begin{array}{cc} 2 & 3 \\ 10 & 15 \end{array}\right], \mathrm{B}=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 2 & 3 \end{array}\right], \mathrm{C}=\left[\begin{array}{lll} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{array}\right], \mathrm{D}=\left[\begin{array}{lll} 2 & 4 & 2 \\ 1 & 1 & 0 \\ 1 & 4 & 5 \end{array}\right] \end{aligned}$$

MHT CET 2021 23rd September Evening Shift
43

If $$A=\left[\begin{array}{rr}2 & 3 \\ 5 & -2\end{array}\right]$$ and $$A^{-1}=K A$$, then $$K$$ is

MHT CET 2021 23th September Morning Shift
44

If $$\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$, then $$\mathrm{A}(\operatorname{adj} \mathrm{A})=$$

MHT CET 2021 23th September Morning Shift
45

If $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 3 & 3 & -4\end{array}\right], B=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$$ and $$X=\left[\begin{array}{l}x_1 \\ x_2 \\ x_3\end{array}\right]$$ such that $$A X=B$$, then the value of $$x_1+x_2+x_3=$$

MHT CET 2021 23th September Morning Shift
46

If $$A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$$ and $$A$$ adj $$A=A A^T$$, then $$5 a+b=$$

MHT CET 2021 22th September Evening Shift
47

For an invertible matrix $$A$$, if $$A(\operatorname{adj} A)=\left[\begin{array}{cc}20 & 0 \\ 0 & 20\end{array}\right]$$, then $$|A|=$$

MHT CET 2021 22th September Evening Shift
48

If $$A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$$ and $$B=\left[\begin{array}{cc}1 & 2 \\ -3 & 1 \\ 0 & 2\end{array}\right]$$, then $$(A B)^{-1}$$

MHT CET 2021 22th September Evening Shift
49

If $$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$$, then the value of determinant of $$A^{-1}$$ is

MHT CET 2021 22th September Morning Shift
50

If $$A = \left[ {\matrix{ k & 2 \cr { - 2} & { - k} \cr } } \right]$$, then A$$^{-1}$$ does not exists if k =

MHT CET 2021 22th September Morning Shift
51

The sum of three numbers is 6. Thrice the third number when added to the first number gives 7. On adding three times first number to the sum of second and third number we get 12. The product of these numbers is

MHT CET 2021 22th September Morning Shift
52

If $$A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$, then $$\operatorname{adj} A=$$

MHT CET 2021 21th September Evening Shift
53

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$$ and $$A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 6 & 2 c \\ 5 & -3 & 1\end{array}\right]$$, then values of a and c are respectively

MHT CET 2021 21th September Evening Shift
54

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$, then $$A^{-1}=$$

MHT CET 2021 21th September Evening Shift
55

If $$F(\propto)=\left[\begin{array}{ccc}\cos \propto & -\sin \propto & 0 \\ \sin \propto & \cos \propto & 0 \\ 0 & 0 & 1\end{array}\right]$$, where $$\propto \in R$$, then $$[F(\propto)]^{-1}=$$

MHT CET 2021 21th September Morning Shift
56

If $$A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right], \operatorname{adj} A=\left[\begin{array}{ccc}5 & x & -2 \\ 1 & 1 & 0 \\ -2 & -2 & y\end{array}\right]$$, then value of $$x+y$$ is

MHT CET 2021 21th September Morning Shift
57

$$\mathrm{A}^{-1}=\frac{-1}{2}\left[\begin{array}{cc}1 & -4 \\ -1 & 2\end{array}\right]$$, then $$2 A+I_2=\quad$$

where $$I_2$$ is a unit matrix of order 2

MHT CET 2021 21th September Morning Shift
58

The co-factors of the elements of second column of $$\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 2 & 1 \\ -1 & 3 & 4\end{array}\right]$$ are

MHT CET 2021 20th September Evening Shift
59

If $$A^{-1}=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 5 & 5\end{array}\right]$$, then $$A=$$

MHT CET 2021 20th September Evening Shift
60

If $$A^{-1}=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$$ and $$B^{-1}=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$$, then $$(A B)^{-1}=$$

MHT CET 2021 20th September Evening Shift
61

$$A(\propto)=\left[\begin{array}{cc}\cos \propto & \sin \propto \\ -\sin \propto & \cos \propto\end{array}\right]$$, then $$\left[A^2(\propto)\right]^{-1}=$$

MHT CET 2021 20th September Morning Shift
62

If inverse of $$\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]$$ does not exist, then $$x=$$

MHT CET 2021 20th September Morning Shift
63

If $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 1 & 2 & 1 \cr 3 & 2 & 6 \cr } } \right]$$ and A$$_{ij}$$ are cofactors of the elements a$$_{ij}$$ of A, then $${a_{11}}{A_{11}} + {a_{12}}{A_{12}} + {a_{13}}{A_{13}}$$ is equal to

MHT CET 2021 20th September Morning Shift
64

If $A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]$ and $A^2-5 A-6 I=0$, then $A^{-1}=$

MHT CET 2020 19th October Evening Shift
65

The cofactors of the elements of the first column of the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$ are

MHT CET 2020 19th October Evening Shift
66

The matrix $$A=\left[\begin{array}{rrr}a & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2\end{array}\right]$$ is not invertible only if $$a=$$

MHT CET 2020 16th October Evening Shift
67

If $$A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$$, then $$B^{-1} A^{-1}=$$

MHT CET 2020 16th October Evening Shift
68

The sum of the cofactors of the elements of second row of the matrix $$\left[\begin{array}{rrr}1 & 3 & 2 \\ -2 & 0 & 1 \\ 5 & 2 & 1\end{array}\right]$$ is

MHT CET 2020 16th October Morning Shift
69

If $$A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$$ and $$A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]$$, then the values of $$\alpha$$ and $$\beta$$ are, respectively.

MHT CET 2020 16th October Morning Shift
70

If $A$ and $B$ are square matrices of order 3 such that $|A|=2,|B|=4$, then $|A(\operatorname{adj} B)|=\ldots$

MHT CET 2019 3rd May Morning Shift
71

If $A$ is non-singular matrix and $(A+I)(A-I)=0$ then $A+A^{-1}=$ .............

MHT CET 2019 2nd May Evening Shift
72

If $A=\left[\begin{array}{cc}1+2 i & i \\ -i & 1-2 i\end{array}\right]$, where $i=\sqrt{-1}$, then $A(\operatorname{adj} A)=\ldots$

MHT CET 2019 2nd May Evening Shift
73

If $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$ and $A=A^{-1}$, then $x=\ldots \ldots$

MHT CET 2019 2nd May Morning Shift
74

If $A$ is non-singular matrix such that $(A-2 l)(A-4 I)=0$ then $A+8 A^{-1}=$ ..........

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12