Matrices and Determinants · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

If $A$ is a matrix of order 2 and $I$ is the identity matrix of order 2 such that $A^2-4 A+3 I=0$ then $(A+3 I)^{-1}=$

MHT CET 2025 26th April Evening Shift
2

Matrix A is non-singular matrix and $(A-3 I)(A-5 I)=0$, then $\frac{15}{8} A^{-1}=\ldots \ldots$

MHT CET 2025 26th April Morning Shift
3

If $\mathrm{A}=\left[\begin{array}{cc}5 \mathrm{a} & -\mathrm{b} \\ 3 & 2\end{array}\right]$ and A .adj $\mathrm{A}=\mathrm{AA}^{\mathrm{T}}$, then $5 \mathrm{a}+\mathrm{b}=$

MHT CET 2025 25th April Evening Shift
4

If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]_{3 \times 3}$, then $A^{-1}=$

MHT CET 2025 25th April Morning Shift
5

If $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right], B=\operatorname{adj} A$ and $C=5 A$, then $\frac{|\operatorname{adjB}|}{|\mathrm{C}|}=$

MHT CET 2025 23rd April Evening Shift
6

If A and B are non-singular matrices of order 2 such that $\quad(A B)^{-1}=\frac{1}{6}\left[\begin{array}{cc}-1 & -3 \\ 2 & 3\end{array}\right] \quad$ and $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}4 & 3 \\ -1 & 0\end{array}\right]$ then $B^{-1}=$

MHT CET 2025 23rd April Morning Shift
7

If matrix $\quad A=\frac{1}{11}\left[\begin{array}{rrr}-1 & 7 & -24 \\ 2 & a & 4 \\ 2 & -3 & 15\end{array}\right] \quad$ and $A^{-1}=\left[\begin{array}{rrr}3 & 3 & 4 \\ 2 & -3 & 4 \\ b & -1 & c\end{array}\right]$, then the values of $a, b, c$ respectively are ……

MHT CET 2025 22nd April Evening Shift
8

If $A=\left[\begin{array}{cc}1 & \cot \frac{\theta}{2} \\ -\cot \frac{\theta}{2} & 1\end{array}\right]$ then $A^{-1}=$

MHT CET 2025 22nd April Morning Shift
9

Let A be a non-singular matrix of order n and $|A|=k$, then $(\operatorname{adj} A)^{-1}$ is

MHT CET 2025 21st April Evening Shift
10

The distance between the lines represented by $16 x^2+9 y^2+48 x-24 x y-36 y+35=0$ is ......... units

MHT CET 2025 21st April Evening Shift
11

The third element in the second row of adjoint of a matrix $A=\left[a_{i j}\right]_{3 \times 3}$ (where $a_{i j}=2 i+j$ ) is

MHT CET 2025 21st April Morning Shift
12

If $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}12 \\ 15 \\ 13\end{array}\right]$, then the value of $x^2+y^2+z^2=$

MHT CET 2025 20th April Evening Shift
13

If $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$, then $A^T A^{-1}=$

MHT CET 2025 20th April Morning Shift
14

If $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 4\end{array}\right]$ and $A^{-1}=\alpha I+\beta A \alpha, \beta \in R$ where I is the identity matrix of order 2 , then $4(\alpha+\beta)=$

MHT CET 2025 19th April Evening Shift
15
If $A=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$, where $A_{21}, A_{22}, A_{23}$ are cofactors of $a_{21}, a_{22}, a_{23}$ respectively, then the value of $\mathrm{a}_{21} \mathrm{~A}_{21}+\mathrm{a}_{22} \mathrm{~A}_{22}+\mathrm{a}_{23} \mathrm{~A}_{23}=$
MHT CET 2025 19th April Morning Shift
16

Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ and $A^{-1}=\alpha \mathrm{I}+\beta \mathrm{A}, \alpha, \beta \in \mathbb{R}$, I is the identity matrix of order 2 , then $4(\alpha-\beta)$ is

MHT CET 2024 16th May Evening Shift
17

If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \quad \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}$, $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ and $\left[\begin{array}{lll}3 \bar{a}+\bar{b} & 3 \bar{b}+\bar{c} & 3 \bar{c}+\bar{a}\end{array}\right]=\lambda\left|\begin{array}{lll}\overline{\mathrm{a}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{b}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{c}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{k}}\end{array}\right|,$ then the value of $\lambda$ is

MHT CET 2024 16th May Evening Shift
18

Let $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right], x \in \mathbb{R}^{+}$and $A^4=\left[a_{i j}\right]_2$. If $a_{11}=109$, then $\left(A^4\right)^{-1}=$

MHT CET 2024 16th May Morning Shift
19

If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $A \cdot \operatorname{adj} A=A A^T$, then $5 a+b$ is equal to

MHT CET 2024 15th May Evening Shift
20

Let A and B be $3 \times 3$ real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $\left(A^2 B^2-B^2 A^2\right) X=O$. where $X$ is $3 \times 1$ column matrix of unknown variables and $O$ is a $3 \times 1$ null matrix, has

MHT CET 2024 15th May Morning Shift
21

If $A\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ then $\left(A^2-5 A\right)^{-1}$ is

MHT CET 2024 11th May Evening Shift
22

Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$ such that $\mathrm{AX}=\mathrm{B}$, then $\mathrm{X}=$

MHT CET 2024 11th May Morning Shift
23

If $\mathrm{w}=\frac{-1-\mathrm{i} \sqrt{3}}{2}$ where $\mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{array}\right|$ is

MHT CET 2024 10th May Evening Shift
24

Inverse of the matrix $\left[\begin{array}{cc}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right]$ is

MHT CET 2024 10th May Evening Shift
25

If $A+B=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ where $A$ is symmetric and $B$ is skew-symmetric matrix, then the matrix $\left(A^{-1} B+A B^{-1}\right)$ at $\theta=\frac{\pi}{6}$ is given by

MHT CET 2024 10th May Morning Shift
26

For the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$, the matrix of cofactors is

MHT CET 2024 9th May Evening Shift
27

If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & 3 \\ 3 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 0 & b \\ 7 & -1 & -2 \\ c & 1 & 1\end{array}\right]$ and if matrix $B$ is the inverse of matrix $A$, then value of $4 a+2 b-c$ is

MHT CET 2024 9th May Morning Shift
28

Let $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}_2$, (where $\mathrm{I}_2$ is unit matrix of order 2), then

MHT CET 2024 4th May Evening Shift
29

Suppose A is any $3 \times 3$ non-singular matrix and $(\mathrm{A}-3 \mathrm{I})(\mathrm{A}-5 \mathrm{I})=0$ where $\mathrm{I}=\mathrm{I}_3$ and $\mathrm{O}=\mathrm{O}_3$. Here $\mathrm{O}_3$ represent zero matrix of order 3 and $\mathrm{I}_3$ is an identity matrix of order 3 . If $\alpha A+\beta A^{-1}=4 I$, then $\alpha+\beta$ is equal to

MHT CET 2024 4th May Morning Shift
30

For the system $x-y+z=4,2 x+y-3 z=0$, $x+y+z=2$, the values of $x, y, z$ respectively are given by

MHT CET 2024 3rd May Evening Shift
31

If $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$, then $A^{-1}=$

MHT CET 2024 3rd May Morning Shift
32

Let $X=\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array}\right], \mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$. If $A X=B$, then the value of $2 a-3 b+4 c$ will be

MHT CET 2024 2nd May Evening Shift
33

If $A=\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$, then $A^{-1}$ is

MHT CET 2024 2nd May Morning Shift
34

If $$A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}1 & 1 \\ 4 & -1\end{array}\right]$$, then $$(A+B)^{-1}$$ is

MHT CET 2023 14th May Evening Shift
35

Let $$A=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right].$$ If $$B=I-{ }^3 C_1(\operatorname{adj} A)+{ }^3 C_2(\operatorname{adj} A)^2-{ }^3 C_3(\operatorname{adj} A)^3$$, then the sum of all elements of the matrix B is

MHT CET 2023 14th May Morning Shift
36

If $$A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$$, then $$A^T \cdot A^{-1}=$$

MHT CET 2023 13th May Evening Shift
37

If $$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$ and $$A_{i j}$$ is a cofactor of $$a_{i j}$$ then the value of $$a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}$$ is

MHT CET 2023 13th May Morning Shift
38

If $$A=\left[\begin{array}{cc}2 a & -3 b \\ 3 & 2\end{array}\right]$$ and $$A \cdot \operatorname{adj} A=A A^T$$, then $$2 a+3 b$$ is

MHT CET 2023 12th May Evening Shift
39

If the matrix $$\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$$ and $$\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}$$, when $$I$$ is a unit matrix of order 2 , then the value of $$2 x+3 y$$ is

MHT CET 2023 12th May Morning Shift
40

If $$\mathrm{A}=\left[\begin{array}{ll}\mathrm{i} & 1 \\ 1 & 0\end{array}\right]$$ where $$\mathrm{i}=\sqrt{-1}$$ and $$\mathrm{B}=\mathrm{A}^{2029}$$, then $$\mathrm{B}^{-1}=$$

MHT CET 2023 11th May Evening Shift
41

If $$P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and $$|A|=4$$, then value of $$\alpha$$ is

MHT CET 2023 11th May Morning Shift
42

Let $$\omega \neq 1$$ be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form $$\left[\begin{array}{ccc}1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1\end{array}\right]$$ where each of $$a, b$$ and $$c$$ is either $$\omega$$ or $$\omega^2$$, then the number of distinct matrices in the set $$\mathrm{S}$$ is

MHT CET 2023 11th May Morning Shift
43

If $$B=\left[\begin{array}{ccc}3 & \alpha & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix $$\mathrm{A}$$ and $$|\mathrm{A}|=4$$, then $$\alpha$$ is equal to

MHT CET 2023 10th May Evening Shift
44

If $$B=\left[\begin{array}{lll}1 & \alpha & 2 \\ 1 & 2 & 2 \\ 2 & 3 & 3\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix A and $$|A|=5$$, then $$\alpha$$ is equal to

MHT CET 2023 10th May Morning Shift
45

If $$\left|\begin{array}{ccc}\cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B\end{array}\right|=0$$, then the value of $$B$$ is

MHT CET 2023 9th May Evening Shift
46

Let $$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1\end{array}\right], B=\left[\begin{array}{c}6 \\ 11 \\ 0\end{array}\right]$$ and $$X=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$$, if $$\mathrm{AX}=\mathrm{B}$$, then the value of $$2 \mathrm{a}+\mathrm{b}+2 \mathrm{c}$$ is

MHT CET 2023 9th May Evening Shift
47

If $$A=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$$, then the inverse of $$\left(2 A^2+5 A\right)$$ is

MHT CET 2023 9th May Morning Shift
48

If $$A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 3\end{array}\right]$$ and $$B=\left[\begin{array}{ll}2 & 3 \\ 1 & 2 \\ 1 & 2\end{array}\right]$$, then $$(A B)^{-1}=$$

MHT CET 2022 11th August Evening Shift
49

Given $$A=\left[\begin{array}{ccc}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$$, if $$x y z=60$$ and $$8 x+4 y+3 z=20$$, then $$A$$.(adjA)

MHT CET 2022 11th August Evening Shift
50

If $$\mathrm{A}=\left[\begin{array}{cc}\lambda & \mathrm{i} \\ \mathrm{i} & -\lambda\end{array}\right]$$ and $$\mathrm{A}^{-1}$$ does not exist, then $$\lambda=$$ (where $$\mathrm{i}=\sqrt{-1}$$)

MHT CET 2021 24th September Evening Shift
51

If $$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$, and $$A(\operatorname{adj} A)=k I$$, then the value of $$(k+1)^4$$ is

MHT CET 2021 24th September Evening Shift
52

IF $$A X=B$$, where $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$$, then $$2 x+y-z=$$

MHT CET 2021 24th September Evening Shift
53

$$\text { If } A=\left[\begin{array}{ll} 2 & -2 \\ 2 & -3 \end{array}\right], B=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \text {, then }\left(B^{-1} A^{-1}\right)^{-1}=\text { ? }$$

MHT CET 2021 24th September Morning Shift
54

If $$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & a \\ 2 & 4 & 7\end{array}\right]$$ and $$B=\left[\begin{array}{ccc}13 & 2 & b \\ -3 & -1 & 2 \\ -2 & 0 & 1\end{array}\right]$$ where matrix B is inverse of matrix A, then the value of a and b are

MHT CET 2021 24th September Morning Shift
55

For a $$3 \times 3$$ matrix $$\mathrm{A}$$, if $$\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{ccc}-10 & 0 & 0 \\ 0 & -10 & 2 \\ 0 & 0 & -10\end{array}\right]$$, then the value of determinant of A is

MHT CET 2021 24th September Morning Shift
56

If $$A=\left[\begin{array}{ccc}5 & 6 & 3 \\ -4 & 3 & 2 \\ -4 & -7 & 3\end{array}\right]$$, then cofactors of all elements of second row are respectively.

MHT CET 2021 23rd September Evening Shift
57

Which of the following matrices are invertible?

$$\begin{aligned} & \mathrm{A}=\left[\begin{array}{cc} 2 & 3 \\ 10 & 15 \end{array}\right], \mathrm{B}=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 2 & 3 \end{array}\right], \mathrm{C}=\left[\begin{array}{lll} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{array}\right], \mathrm{D}=\left[\begin{array}{lll} 2 & 4 & 2 \\ 1 & 1 & 0 \\ 1 & 4 & 5 \end{array}\right] \end{aligned}$$

MHT CET 2021 23rd September Evening Shift
58

If $$A=\left[\begin{array}{rr}2 & 3 \\ 5 & -2\end{array}\right]$$ and $$A^{-1}=K A$$, then $$K$$ is

MHT CET 2021 23th September Morning Shift
59

If $$\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$, then $$\mathrm{A}(\operatorname{adj} \mathrm{A})=$$

MHT CET 2021 23th September Morning Shift
60

If $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 3 & 3 & -4\end{array}\right], B=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$$ and $$X=\left[\begin{array}{l}x_1 \\ x_2 \\ x_3\end{array}\right]$$ such that $$A X=B$$, then the value of $$x_1+x_2+x_3=$$

MHT CET 2021 23th September Morning Shift
61

If $$A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$$ and $$A$$ adj $$A=A A^T$$, then $$5 a+b=$$

MHT CET 2021 22th September Evening Shift
62

For an invertible matrix $$A$$, if $$A(\operatorname{adj} A)=\left[\begin{array}{cc}20 & 0 \\ 0 & 20\end{array}\right]$$, then $$|A|=$$

MHT CET 2021 22th September Evening Shift
63

If $$A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$$ and $$B=\left[\begin{array}{cc}1 & 2 \\ -3 & 1 \\ 0 & 2\end{array}\right]$$, then $$(A B)^{-1}$$

MHT CET 2021 22th September Evening Shift
64

If $$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$$, then the value of determinant of $$A^{-1}$$ is

MHT CET 2021 22th September Morning Shift
65

If $$A = \left[ {\matrix{ k & 2 \cr { - 2} & { - k} \cr } } \right]$$, then A$$^{-1}$$ does not exists if k =

MHT CET 2021 22th September Morning Shift
66

The sum of three numbers is 6. Thrice the third number when added to the first number gives 7. On adding three times first number to the sum of second and third number we get 12. The product of these numbers is

MHT CET 2021 22th September Morning Shift
67

If $$A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$, then $$\operatorname{adj} A=$$

MHT CET 2021 21th September Evening Shift
68

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$$ and $$A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 6 & 2 c \\ 5 & -3 & 1\end{array}\right]$$, then values of a and c are respectively

MHT CET 2021 21th September Evening Shift
69

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$, then $$A^{-1}=$$

MHT CET 2021 21th September Evening Shift
70

If $$F(\propto)=\left[\begin{array}{ccc}\cos \propto & -\sin \propto & 0 \\ \sin \propto & \cos \propto & 0 \\ 0 & 0 & 1\end{array}\right]$$, where $$\propto \in R$$, then $$[F(\propto)]^{-1}=$$

MHT CET 2021 21th September Morning Shift
71

If $$A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right], \operatorname{adj} A=\left[\begin{array}{ccc}5 & x & -2 \\ 1 & 1 & 0 \\ -2 & -2 & y\end{array}\right]$$, then value of $$x+y$$ is

MHT CET 2021 21th September Morning Shift
72

$$\mathrm{A}^{-1}=\frac{-1}{2}\left[\begin{array}{cc}1 & -4 \\ -1 & 2\end{array}\right]$$, then $$2 A+I_2=\quad$$

where $$I_2$$ is a unit matrix of order 2

MHT CET 2021 21th September Morning Shift
73

The co-factors of the elements of second column of $$\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 2 & 1 \\ -1 & 3 & 4\end{array}\right]$$ are

MHT CET 2021 20th September Evening Shift
74

If $$A^{-1}=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 5 & 5\end{array}\right]$$, then $$A=$$

MHT CET 2021 20th September Evening Shift
75

If $$A^{-1}=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$$ and $$B^{-1}=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$$, then $$(A B)^{-1}=$$

MHT CET 2021 20th September Evening Shift
76

$$A(\propto)=\left[\begin{array}{cc}\cos \propto & \sin \propto \\ -\sin \propto & \cos \propto\end{array}\right]$$, then $$\left[A^2(\propto)\right]^{-1}=$$

MHT CET 2021 20th September Morning Shift
77

If inverse of $$\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]$$ does not exist, then $$x=$$

MHT CET 2021 20th September Morning Shift
78

If $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 1 & 2 & 1 \cr 3 & 2 & 6 \cr } } \right]$$ and A$$_{ij}$$ are cofactors of the elements a$$_{ij}$$ of A, then $${a_{11}}{A_{11}} + {a_{12}}{A_{12}} + {a_{13}}{A_{13}}$$ is equal to

MHT CET 2021 20th September Morning Shift
79

If $A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]$ and $A^2-5 A-6 I=0$, then $A^{-1}=$

MHT CET 2020 19th October Evening Shift
80

The cofactors of the elements of the first column of the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$ are

MHT CET 2020 19th October Evening Shift
81

The matrix $$A=\left[\begin{array}{rrr}a & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2\end{array}\right]$$ is not invertible only if $$a=$$

MHT CET 2020 16th October Evening Shift
82

If $$A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$$, then $$B^{-1} A^{-1}=$$

MHT CET 2020 16th October Evening Shift
83

The sum of the cofactors of the elements of second row of the matrix $$\left[\begin{array}{rrr}1 & 3 & 2 \\ -2 & 0 & 1 \\ 5 & 2 & 1\end{array}\right]$$ is

MHT CET 2020 16th October Morning Shift
84

If $$A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$$ and $$A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]$$, then the values of $$\alpha$$ and $$\beta$$ are, respectively.

MHT CET 2020 16th October Morning Shift
85

If $A$ and $B$ are square matrices of order 3 such that $|A|=2,|B|=4$, then $|A(\operatorname{adj} B)|=\ldots$

MHT CET 2019 3rd May Morning Shift
86

If $A$ is non-singular matrix and $(A+I)(A-I)=0$ then $A+A^{-1}=$ .............

MHT CET 2019 2nd May Evening Shift
87

If $A=\left[\begin{array}{cc}1+2 i & i \\ -i & 1-2 i\end{array}\right]$, where $i=\sqrt{-1}$, then $A(\operatorname{adj} A)=\ldots$

MHT CET 2019 2nd May Evening Shift
88

If $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$ and $A=A^{-1}$, then $x=\ldots \ldots$

MHT CET 2019 2nd May Morning Shift
89

If $A$ is non-singular matrix such that $(A-2 l)(A-4 I)=0$ then $A+8 A^{-1}=$ ..........

MHT CET 2019 2nd May Morning Shift
EXAM MAP