1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{1}{2}\right], \quad \mathrm{f}(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $\mathrm{f}\left(\frac{\pi}{4}\right)$ is

A
$-\frac{1}{2}$
B
$\frac{1}{2}$
C
1
D
$-1$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $$(\sqrt[3]{1+a}-1) x^2+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$$ where $a>-1$ then $\lim _\limits{a \rightarrow 0^{+}} \alpha(a)$ and $\lim _\limits{a \rightarrow 0^{+}} \beta(a)$ respectively are

A
1 and $-\frac{5}{2}$
B
$-$1 and $-\frac{1}{2}$
C
2 and $-\frac{7}{2}$
D
3 and $-\frac{9}{2}$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of k , for which the function

$$\mathrm{f}(x)= \begin{cases}\left(\frac{4}{5}\right)^{\frac{\ln 4 x}{\tan 5 x}}, & 0< x< \frac{\pi}{2} \\ \mathrm{k}+\frac{2}{5} & , x=\frac{\pi}{2}\end{cases}$$

is continuous at $x=\frac{\pi}{2}$, is

A
$\frac{17}{20}$
B
$\frac{3}{5}$
C
$-\frac{2}{5}$
D
$\frac{2}{5}$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\lim _\limits{x \rightarrow 0} \frac{\sin \left(\pi \cos ^2 x\right)}{x^2}$ is equal to

A
1
B
$-\pi$
C
$\pi$
D
$\frac{\pi}{2}$
MHT CET Subjects
EXAM MAP