Functions · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

Range of the function $\mathrm{f}(x)=\frac{x^2+x+2}{x^2+x+1}, x \in \mathbb{R}$ is

MHT CET 2024 16th May Morning Shift
2

If $[x]^2-5[x]+6=0$, where $[\cdot]$ denotes the greatest integer function, then

MHT CET 2024 15th May Evening Shift
3

Let $\mathrm{f}(x)=(x+1)^2-1, x \geqslant-1$, then the set $\left\{x / f(x)=f^{-1}(x)\right\}$ is

MHT CET 2024 15th May Morning Shift
4

If $\mathrm{f}:[1, \infty) \rightarrow[2, \infty)$ is given by $\mathrm{f}(x)=x+\frac{1}{x}$ then $\mathrm{f}^{-1}(x)$ equals

MHT CET 2024 11th May Evening Shift
5

If $[x]^2-5[x]+6=0$, where $[x]$ denotes the greatest integer function, then

MHT CET 2024 11th May Morning Shift
6

Let $\mathrm{f}(x)=\frac{a x}{x+1}, x \neq-1$, then for $\alpha=$ ________, $\mathrm{f}(\mathrm{f}(x))=x$.

MHT CET 2024 10th May Evening Shift
7

The domain of definition of the function $y(x)$ is given by the equation $2^x+2^y=2$, is

MHT CET 2024 10th May Morning Shift
8

The domain of definition of the function $f(x)$ given by the equation $2^x+2^y=2$ is

MHT CET 2024 9th May Evening Shift
9

If $\mathrm{f}(x)=\frac{x}{2-x}, \mathrm{~g}(x)=\frac{x+1}{x+2}$, then (gogof) $(x)=$

MHT CET 2024 4th May Evening Shift
10

The domain of definition of $\mathrm{f}(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

MHT CET 2024 3rd May Evening Shift
11

If $g(x)=x^2+x-1$ and (gof) $(x)=4 x^2-10 x+5$, then $\mathrm{f}(2)$ is equal to

MHT CET 2024 3rd May Morning Shift
12

For a suitable chosen real constant a, let a function $f: \mathbb{R}-\{-\mathrm{a}\} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{a-x}{a+x}$. Further suppose that for any real number $x \neq-\mathrm{a}$ and $\mathrm{f}(x) \neq-\mathrm{a}$, (fof) $(x)=x$. Then $f\left(-\frac{1}{5}\right)$ is equal to

MHT CET 2024 2nd May Morning Shift
13

If $$\mathrm{f}(x)=\frac{2 x-3}{3 x-4}, x \neq \frac{4}{3}$$, then the value of $$\mathrm{f}^{-1}(x)$$ is

MHT CET 2023 14th May Evening Shift
14

The range of the function $$\mathrm{f}(x)=\frac{x^2}{x^2+1}$$ is

MHT CET 2023 14th May Morning Shift
15

The function $$\mathrm{f}(x)=[x] \cdot \cos \left(\frac{2 x-1}{2}\right) \pi$$, where $$[\cdot]$$ denotes the greatest integer function, is discontinuous at

MHT CET 2023 14th May Morning Shift
16

The domain of the definition of the function $$y(x)$$ is given by the equation $$2^x+2^y=2$$ is

MHT CET 2023 13th May Evening Shift
17

If $$3 \mathrm{f}(x)-\mathrm{f}\left(\frac{1}{x}\right)=8 \log _2 x^3, x>0$$, then $$\mathrm{f}(2), \mathrm{f}(4)$$, $$f(8)$$ are in

MHT CET 2023 13th May Morning Shift
18

If $$\mathrm{f}(x)=x^2+1$$ and $$\mathrm{g}(x)=\frac{1}{x}$$, then the value of $$\mathrm{f}(\mathrm{g}(\mathrm{g}(\mathrm{f}(x))))$$ at $$x=1$$ is

MHT CET 2023 12th May Evening Shift
19

If $$\mathrm{g}(x)=1+\sqrt{x}$$ and $$\mathrm{f}(\mathrm{g}(x))=3+2 \sqrt{x}+x$$ then $$\mathrm{f}(\mathrm{f}(x))$$ is

MHT CET 2023 12th May Morning Shift
20

The approximate value of $$\sin \left(60^{\circ} 0^{\prime} 10^{\prime \prime}\right)$$ is (given that $$\sqrt{3}=1.732,1^{\circ}=0.0175^{\circ}$$ )

MHT CET 2023 12th May Morning Shift
21

If $$\mathrm{f}(x)=\frac{3 x+4}{5 x-7}$$ and $$\mathrm{g}(x)=\frac{7 x+4}{5 x-3}$$, then $$\mathrm{f}(\mathrm{g}(x))=$$

MHT CET 2023 11th May Evening Shift
22

The domain of the function given by $$2^x+2^y=2$$ is

MHT CET 2023 11th May Morning Shift
23

Let $$\mathrm{f}(x)=\mathrm{e}^x-x$$ and $$\mathrm{g}(x)=x^2-x, \forall x \in \mathrm{R}$$, then the set of all $$x \in \mathrm{R}$$, where the function $$\mathrm{h}(x)=(\mathrm{fog})(x)$$ is increasing is

MHT CET 2023 10th May Evening Shift
24

$$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} ; \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$$ are two functions such that $$\mathrm{f}(x)=2 x-3, \mathrm{~g}(x)=x^3+5$$, then $$(\mathrm{fog})^{-1}(-9)$$ is

MHT CET 2023 10th May Morning Shift
25

$$\mathrm{f}: \mathbb{R}-\left(-\frac{3}{5}\right) \rightarrow \mathbb{R}$$ is defined by $$f(x)=\frac{3 x-2}{5 x+3}$$, then $$f \circ f(1)$$ is

MHT CET 2023 9th May Morning Shift
26

The number of discontinuities of the greatest integer function $$\mathrm{f}(x)=[x], x \in\left(-\frac{7}{2}, 100\right)$$

MHT CET 2023 9th May Morning Shift
27

If $$[x]$$ is greatest integer function and $$2[2 x-5]-1=7$$, then $$x$$ lies in

MHT CET 2022 11th August Evening Shift
28

If $$f(x)=2\{x\}+5 x$$, where $$\{x\}$$ is fractional part function, then $$f(-1.4)$$ is

MHT CET 2021 24th September Evening Shift
29

If $$f(x)=\frac{x}{2 x+1}$$ and $$g(x)=\frac{x}{x+1}$$, then $$(f \circ g)(x)=$$

MHT CET 2021 24th September Morning Shift
30

The domain of the function $$\log _{10}\left(x^2-5 x+6\right)$$ is

MHT CET 2021 23rd September Evening Shift
31

Range of the function $$f(x)=3+2^x+4^x$$ is

MHT CET 2021 23th September Morning Shift
32

If $$f(x)=[8 x]-3$$, where $$[x]$$ is greatest integer function of $$x$$, then $$f(\pi)=$$ (where $$\pi=3,14$$)

MHT CET 2021 22th September Evening Shift
33

The domain of the function $$f(x)=\sqrt{x-1}+\sqrt{6-x}$$ is

MHT CET 2021 22th September Morning Shift
34

If f(x) = 3[x] + 5{x + 1}, where [x] is greatest integer function of x and {x} is fractional part function of x, then f($$-$$1.32) =

MHT CET 2021 21th September Morning Shift
35

Let $$A=[a, b, c, d], B=[1,2,3]$$. Relation $$R_1, R_2, R_3, R_4$$ are as follows :

$$\begin{aligned} & R_1=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{d}, 2)] \\ & \mathrm{R}_2=[(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 1),(\mathrm{d}, 1)] \\ & \mathrm{R}_3=[(\mathrm{a}, 2),(\mathrm{b}, 3),(\mathrm{c}, 2),(\mathrm{d}, 2)] \\ & \mathrm{R}_4=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{a}, 2),(\mathrm{d}, 3)] \text {, then } \end{aligned}$$

MHT CET 2021 20th September Evening Shift
36

The domain of the function $$f(x)=\frac{1}{\sqrt{x+|x|}}$$ is

MHT CET 2021 20th September Morning Shift
37

The range of the function $f(x)=\frac{x-3}{5-x}, x \neq 5$ is

MHT CET 2020 19th October Evening Shift
38

For $$f(x)=[x]$$, where $$[x]$$ is the greatest integer function, which of the following is true, for every $$x \in \mathbf{R}$$

MHT CET 2020 16th October Evening Shift
39

The domain of the function $$f(x)=\sqrt{x}$$ is

MHT CET 2020 16th October Evening Shift
40

The approximate value of the function $$f(x)=x^3-3 x+5$$ at $$x=1.99$$ is

MHT CET 2020 16th October Morning Shift
41

If $$f(x)=\frac{2 x+3}{3 x-2}, x \neq \frac{2}{3}$$, then the function $$f$$ of is

MHT CET 2020 16th October Morning Shift
42

The domain of the real valued function $f(x)=\sqrt{\frac{x-2}{3-x}}$ is......

MHT CET 2019 3rd May Morning Shift
43

Which of the following function has period 2?

MHT CET 2019 3rd May Morning Shift
44

If $f(x)=3 x+6, g(x)=4 x+k$ and $f \circ g(x)=g \circ f(x)$ then $k=$

MHT CET 2019 2nd May Evening Shift
45

If $f(x)=3 x-2$ and $g(x)=x^2$, then $(f \circ g)(x)=$

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12