1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $\mathrm{f}(x)=\log \left(\frac{1+x}{1-x}\right)$ and $\mathrm{g}(x)=\frac{3 x+x^3}{1+3 x^2}$, then $(\mathrm{fog})(x)=$
A
$2 \mathrm{f}(x)$
B
$3 \mathrm{f}(x)$
C
$\quad 4 \mathrm{f}(x)$
D
$-\mathrm{f}(x)$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \begin{aligned} & f(x)=\left\{\begin{array}{ll} 3-x, & -1 \leqslant x<0 \\ 1+\frac{5 x}{3}, & -3 \leqslant x \leqslant 2 \end{array}\right. \text { and } \\ & g(x)=\left\{\begin{aligned} -x, & -2 \leqslant x \leqslant 3 \\ x, & 0 \leqslant x \leqslant 1 \end{aligned}\right. \end{aligned} $$

then range of (fog) $(x)$ is

A
$\left[1, \frac{8}{3}\right]$
B
$\left[-4, \frac{8}{3}\right]$
C
$\left[-4, \frac{13}{3}\right]$
D
$\left[\frac{8}{3}, \frac{10}{3}\right]$
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=3 x+10, \mathrm{~g}(x)=x^2-1$, then $(\mathrm{fog})^{-1}(x)=$

A
$\left(\frac{x-7}{3}\right)$
B
$\left(\frac{x-7}{3}\right)^{\frac{1}{2}}$
C
$\left(\frac{x-7}{3}\right)^{\frac{1}{3}}$
D
$\left(\frac{3}{x-7}\right)^{\frac{3}{2}}$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The values of $b$ and $c$ for which the identity $\mathrm{f}(x+1)-\mathrm{f}(x)=8 x+3$ is satisfied, where $\mathrm{f}(x)=\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$, are

A
$\mathrm{b}=2, \mathrm{c}=1$
B
$\mathrm{b}=4, \mathrm{c}=-1$
C
$\mathrm{b}=1, \mathrm{c}=2$
D
$\mathrm{b}=3, \mathrm{c}=-1$
MHT CET Subjects
EXAM MAP