Mathematical Reasoning · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

Truth values of $\mathrm{p} \rightarrow \mathrm{r}$ is F and $\mathrm{p} \leftrightarrow \mathrm{q}$ is F . Then the truth values of $(\sim p \vee q) \rightarrow(p \vee \sim q)$ and $(p \wedge \sim q) \rightarrow(\sim p \wedge q)$ are respectively

MHT CET 2024 16th May Evening Shift
2

The statement $\sim(p \leftrightarrow \sim q)$ is

MHT CET 2024 16th May Evening Shift
3

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

MHT CET 2024 16th May Morning Shift
4

Let $S$ be a non-empty subset of $\mathbb{R}$. Consider the following statement:

p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$.

Which of the following statements is the negation of the statement p?

MHT CET 2024 16th May Morning Shift
5

The contrapositive of the inverse of $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ is

MHT CET 2024 15th May Evening Shift
6

If p : The total prime numbers between 2 to 100 are 26.

q : Zero is a complex number.

$r$ : Least common multiple (L.C.M.) of 6 and 7 is 6 .

Then which of the following is correct?

MHT CET 2024 15th May Evening Shift
7

Contrapositive of the statement. 'If two numbers are equal, then their squares are equal' is

MHT CET 2024 15th May Morning Shift
8

If $p \rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively

MHT CET 2024 15th May Morning Shift
9

Contrapositive of the statement 'If two numbers are not equal, then their squares are not equal', is

MHT CET 2024 11th May Evening Shift
10

The following statement $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow((\sim \mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q})$ is

MHT CET 2024 11th May Evening Shift
11

Let $\mathrm{p}, \mathrm{q}$ and r be the statements

$\mathrm{p}: \mathrm{X}$ is an equilateral triangle

$\mathrm{q}: \mathrm{X}$ is isosceles triangle

r: q $\vee \sim p$,

then the equivalent statement of $r$ is

MHT CET 2024 11th May Morning Shift
12

Let p : A man is judge. $\mathrm{q}: \mathrm{He}$ is honest. The inverse of $p \rightarrow q$ is

MHT CET 2024 11th May Morning Shift
13

The expression $((p \wedge q) \vee(p \vee \sim q)) \wedge(\sim p \wedge \sim q)$ is equivalent to

MHT CET 2024 10th May Evening Shift
14

The converse of "If 3 is a prime number, then 3 is odd." is

MHT CET 2024 10th May Evening Shift
15

If $(p \wedge \sim r) \rightarrow(\sim p \vee q)$ has truth value False, then truth values of $p, q, r$ are respectively.

MHT CET 2024 10th May Evening Shift
16

Negation of the statement "The payment will be made if and only if the work is finished in time." is

MHT CET 2024 10th May Morning Shift
17

The inverse of $p \rightarrow(q \rightarrow r)$ is logically equivalent to

MHT CET 2024 10th May Morning Shift
18

If $\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \sim \mathrm{q})$ is false, then the truth values of p and q are respectively

MHT CET 2024 9th May Evening Shift
19

Negation of the statement ' Horses have wings if and only if crows have tails. ' is

MHT CET 2024 9th May Evening Shift
20

Consider the statements given by following :

(A) If $3+3=7$, then $4+3=8$.

(B) If $5+3=8$, then earth is flat.

(C) If both (A) and (B) are true, then $5+6=17$.

Then which of the following statements is correct?

MHT CET 2024 9th May Morning Shift
21

In a class of 300 students, every student reads 5 news papers and every news paper is read by 60 students. Then the number of newspapers is

MHT CET 2024 9th May Morning Shift
22

Let $p, q, r$ be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim q \vee r)$ is $F$. Then the truth values of $p, q, r$ are respectively

MHT CET 2024 9th May Morning Shift
23

The converse of $[p \wedge(\sim q)] \rightarrow r$ is

MHT CET 2024 4th May Evening Shift
24

If the statements $p, q$ and $r$ have the truth values $\mathrm{F}, \mathrm{T}, \mathrm{F}$ respectively, then the truth values of the statement patterns $(p \wedge \sim q) \rightarrow r$ and $(p \vee q) \rightarrow r$ are respectively

MHT CET 2024 4th May Evening Shift
25

The statement pattern $[p \wedge(q \vee r)] \vee[\sim r \wedge \sim q \wedge p]$ is equivalent to

MHT CET 2024 4th May Morning Shift
26

If $(p \wedge \sim q) \wedge(p \wedge r) \rightarrow \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively

MHT CET 2024 4th May Morning Shift
27

The new switching circuit for the following circuit by simplifying the given circuit is

MHT CET 2024 3rd May Evening Shift Mathematics - Mathematical Reasoning Question 26 English

MHT CET 2024 3rd May Evening Shift
28

$$\sim[(\mathrm{p} \vee \sim \mathrm{q}) \rightarrow(\mathrm{p} \wedge \sim \mathrm{q})] \equiv$$

MHT CET 2024 3rd May Evening Shift
29

If p and q are statements, then _________ is a contingency.

MHT CET 2024 3rd May Morning Shift
30

Consider the following statements

p : the switch $\mathrm{S}_1$ is closed.

q : the switch $\mathrm{S}_2$ is closed.

$r$ : the switch $\mathrm{S}_3$ is closed.

Then the switching circuit represented by the statement $(p \wedge q) \vee(\sim p \wedge(\sim q \vee p \vee r))$ is

MHT CET 2024 3rd May Morning Shift
31

The negation of contrapositive of the statement $\mathrm{p} \rightarrow(\sim \mathrm{q} \wedge \mathrm{r})$ is

MHT CET 2024 2nd May Evening Shift
32

Which one of the following is the pair of equivalent circuits?

MHT CET 2024 2nd May Evening Shift Mathematics - Mathematical Reasoning Question 31 English

MHT CET 2024 2nd May Evening Shift
33

If the statement $p \vee \sim(q \wedge r)$ is false, then the truth values of $p, q$ and $r$ are respectively

MHT CET 2024 2nd May Morning Shift
34

If statement I : If the work is not finished on time, the contractor is in trouble. statement II : Either the work is finished on time or the contractor is in trouble. then

MHT CET 2024 2nd May Morning Shift
35

If the statement $$\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$$ is false, then true statement/statement pattern is

MHT CET 2023 14th May Evening Shift
36

The statement $$[\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})] \vee[\sim \mathrm{r} \wedge \sim \mathrm{q} \wedge \mathrm{p}]$$ is equivalent to

MHT CET 2023 14th May Evening Shift
37

The negation of the statement

"The number is an odd number if and only if it is divisible by 3."

MHT CET 2023 14th May Morning Shift
38

The statement $$[(p \rightarrow q) \wedge \sim q] \rightarrow r$$ is tautology, when $$r$$ is equivalent to

MHT CET 2023 14th May Morning Shift
39

If $$q$$ is false and $$p \wedge q \leftrightarrow r$$ is true, then ............ is a tautology.

MHT CET 2023 13th May Evening Shift
40

Negation of contrapositive of statement pattern $$(p \vee \sim q) \rightarrow(p \wedge \sim q)$$ is

MHT CET 2023 13th May Evening Shift
41

The expression $$(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$$ is equivalent to

MHT CET 2023 13th May Morning Shift
42

Negation of inverse of the following statement pattern $$(p \wedge q) \rightarrow(p \vee \sim q)$$ is

MHT CET 2023 13th May Morning Shift
43

Let

Statement 1 : If a quadrilateral is a square, then all of its sides are equal.

Statement 2: All the sides of a quadrilateral are equal, then it is a square.

MHT CET 2023 12th May Evening Shift
44

The given following circuit is equivalent to

MHT CET 2023 12th May Evening Shift Mathematics - Mathematical Reasoning Question 72 English

MHT CET 2023 12th May Evening Shift
45

The inverse of the statement "If the surface area increase, then the pressure decreases.", is

MHT CET 2023 12th May Morning Shift
46

The contrapositive of "If $$x$$ and $$y$$ are integers such that $$x y$$ is odd, then both $$x$$ and $$y$$ are odd" is

MHT CET 2023 12th May Morning Shift
47

The logical statement $$(\sim(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})) \wedge(\sim \mathrm{q} \wedge \mathrm{r})$$ is equivalent to

MHT CET 2023 11th May Evening Shift
48

If truth value of logical statement $$(p \leftrightarrow \sim q) \rightarrow(\sim p \wedge q)$$ is false, then the truth values of $$p$$ and $$q$$ are respectively

MHT CET 2023 11th May Evening Shift
49

The statement pattern $$\mathrm{p} \rightarrow \sim(\mathrm{p} \wedge \sim \mathrm{q})$$ is equivalent to

MHT CET 2023 11th May Morning Shift
50

If $$\mathrm{p}$$ and $$\mathrm{q}$$ are true statements and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false statements, then the truth values of the statement patterns $$(p \wedge q) \vee r$$ and $$(\mathrm{p} \vee \mathrm{s}) \leftrightarrow(\mathrm{q} \wedge \mathrm{r})$$ are respectively

MHT CET 2023 10th May Evening Shift
51

The negation of the statement pattern $$\sim s \vee(\sim r \wedge s)$$ is equivalent to

MHT CET 2023 10th May Evening Shift
52

The logical statement $$[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$$ is equivalent to

MHT CET 2023 10th May Morning Shift
53

The given circuit is equivalent to

MHT CET 2023 10th May Morning Shift Mathematics - Mathematical Reasoning Question 82 English

MHT CET 2023 10th May Morning Shift
54

Negation of the statement

"The payment will be made if and only if the work is finished in time." Is

MHT CET 2023 9th May Evening Shift
55

Let $$\mathrm{p}, \mathrm{q}, \mathrm{r}$$ be three statements, then $$[p \rightarrow(q \rightarrow r)] \leftrightarrow[(p \wedge q) \rightarrow r]$$ is

MHT CET 2023 9th May Evening Shift
56

If truth values of statements $$\mathrm{p}, \mathrm{q}$$ are true, and $$\mathrm{r}$$, $$s$$ are false, then the truth values of the following statement patterns are respectively

$$\begin{aligned} & \mathrm{a}: \sim(\mathrm{p} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{q} \vee \mathrm{s}) \\ & \mathrm{b}:(\sim \mathrm{q} \wedge \sim \mathrm{r}) \leftrightarrow(\mathrm{p} \vee \mathrm{s}) \\ & \mathrm{c}:(\sim \mathrm{p} \vee \mathrm{q}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s}) \end{aligned}$$

MHT CET 2023 9th May Morning Shift
57

The negation of the statement $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is

MHT CET 2023 9th May Morning Shift
58

If $$p: \forall n \in I N, n^2+n$$ is an even number $$q: \forall n \in I N, n^2-n$$ is an odd numer, then the truth values of $$p \wedge q, p \vee q$$ and $$p \rightarrow q$$ are respectively

MHT CET 2022 11th August Evening Shift
59

The negation of the statement pattern $$p \vee(q \rightarrow \sim r)$$ is

MHT CET 2022 11th August Evening Shift
60

The negation of the statement, "The payment will be made if and only if the work is finished in time" is

MHT CET 2022 11th August Evening Shift
61

The negation of '$$\forall x \in N, x^2+x$$ is even number' is

MHT CET 2021 24th September Evening Shift
62

If $$\mathrm{p}$$ : It is raining.

$$\mathrm{q}$$ : Weather is pleasant

then simplified form of the statement "It is not true, if it is raining then weather is not pleasant" is

MHT CET 2021 24th September Evening Shift
63

The negation of $$p \wedge(q \rightarrow r)$$ is

MHT CET 2021 24th September Morning Shift
64

If $$\mathrm{p}$$ : It is raining and $$\mathrm{q}$$ : It is pleasant, then the symbolic form of "It is neither raining nor pleasant" is

MHT CET 2021 24th September Morning Shift
65

"If two triangles are congruent, then their areas are equal." is the given statement, then the contrapositive of the inverse of the given statement is

(Where $$\mathrm{p}$$ : Two triangles are congruent, $$\mathrm{q}$$ : Their areas are equal)

MHT CET 2021 23rd September Evening Shift
66

The negation of inverse of $$\sim \mathrm{p} \rightarrow \mathrm{q}$$ is

MHT CET 2021 23rd September Evening Shift
67

S1 : If $$-$$7 is an integer, then $$\sqrt{-7}$$ is a complex number

$$\mathrm{S} 2$$ : $$-$$7 is not an integer or $$\sqrt{-7}$$ is a complex number

MHT CET 2021 23th September Morning Shift
68

Negation of the statement : $$3+6>8$$ and $$2+3<6$$ is

MHT CET 2021 23th September Morning Shift
69

Given $$\mathrm{p}$$ : A man is a judge, $$\mathrm{q}$$ : A man is honest

If $$\mathrm{S} 1$$ : If a man is a judge, then he is honest

S2 : If a man is a judge, then he is not honest

S3 : A man is not a judge or he is honest Then

S4 : A man is a judge and he is honest

MHT CET 2021 22th September Evening Shift
70

The statement pattern $$(p \wedge q) \wedge[(p \wedge q) \vee(\sim p \wedge q)]$$ is equivalent to

MHT CET 2021 22th September Evening Shift
71

Let $$a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$$ and $$b:(p \vee s) \leftrightarrow(q \wedge r)$$.

If the truth values of $$p$$ and $$q$$ are true and that of $$r$$ and $$s$$ are false, then the truth values of $$a$$ and $$b$$ are respectively

MHT CET 2021 22th September Evening Shift
72

If statements $$\mathrm{p}$$ and $$\mathrm{q}$$ are true and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false, then truth values of $$\sim(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\mathrm{r} \wedge \mathrm{s})$$ and $$(\sim \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \leftrightarrow \mathrm{s})$$ are respectively.

MHT CET 2021 22th September Morning Shift
73

The expression $$[(p \wedge \sim q) \vee q] \vee(\sim p \wedge q)$$ is equivalent to

MHT CET 2021 22th September Morning Shift
74

The logical statement (p $$\to$$ q) $$\wedge$$ (q $$\to$$ ~p) is equivalent to

MHT CET 2021 21th September Evening Shift
75

If p $$\to$$ (~p $$\vee$$ q) is false, then the truth values of p and q are, respectively

MHT CET 2021 21th September Evening Shift
76

Negation of the statement $$\forall x \in R, x^2+1=0$$ is

MHT CET 2021 21th September Morning Shift
77

If $$p, q$$ are true statements and $$r$$ is false statement, then which of the following is correct.

MHT CET 2021 21th September Morning Shift
78

p : It rains today

q : I am going to school

r : I will meet my friend

s : I will go to watch a movie.

Then symbolic form of the statement "If it does not rain today or I won't go to school, then I will meet my friend and I will go to watch a movie" is

MHT CET 2021 20th September Evening Shift
79

Negation of $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is

MHT CET 2021 20th September Evening Shift
80

The negation of a statement 'x $$\in$$ A $$\cap$$ B $$\to$$ (x $$\in$$ A and x $$\in$$ B)' is

MHT CET 2021 20th September Morning Shift
81

The logical expression $$\mathrm{p} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q}) \equiv$$

MHT CET 2021 20th September Morning Shift
82

The negation of the statement pattern $\sim p \vee(q \rightarrow \sim r)$ is

MHT CET 2020 19th October Evening Shift
83

The statement pattern $p \wedge(q \vee \sim p)$ is equivalent to

MHT CET 2020 19th October Evening Shift
84

The negation of the statement ' He is poor but happy' is

MHT CET 2020 16th October Evening Shift
85

If $$p, q$$ are true statement and $$r$$ is false statement, then which of the following statements is a true statement.

MHT CET 2020 16th October Evening Shift
86

If $$p \rightarrow(\sim p \vee q)$$ is false, then the truth values of $$p$$ and $$q$$ are respectively

MHT CET 2020 16th October Morning Shift
87

The symbolic form of the following circuit is (where $$p, q$$ represents switches $$S_1$$ and $$s_2$$ closed respectively)

MHT CET 2020 16th October Morning Shift Mathematics - Mathematical Reasoning Question 56 English

MHT CET 2020 16th October Morning Shift
88

Let $a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$ and $b:(p \vee s) \leftrightarrow(q \wedge r)$. If the truth values of $p$ and $q$ are true and that of $r$ and $s$ are false, then the truth values of $a$ and $b$ are respectively......

MHT CET 2019 3rd May Morning Shift
89

5. "If two triangles are congruent, then their areas are equal" is the given statement then the contrapositive of, the inverse of the given statement is

MHT CET 2019 3rd May Morning Shift
90

Which of the following statement pattern is a tautology?

MHT CET 2019 3rd May Morning Shift
91

If $p$ and $q$ are true and $r$ and $s$ are false statements, then which of the following is true?

MHT CET 2019 2nd May Evening Shift
92

The negation of " $\forall, n \in N, n+7>6$ " is .............

MHT CET 2019 2nd May Evening Shift
93

Which of the following statements is contingency?

MHT CET 2019 2nd May Evening Shift
94

The statement pattern $(p \wedge q) \wedge[\sim r \vee(p \wedge q)] \vee(\sim p \wedge q)$ is equivalent to ...........

MHT CET 2019 2nd May Morning Shift
95

Which of the following is not equivalent to $p \rightarrow q$.

MHT CET 2019 2nd May Morning Shift
96

The equivalent form of the statement $\sim(p \rightarrow \sim q)$ is $\ldots$

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12