Mathematical Reasoning · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

MHT CET 2024 16th May Evening Shift
Truth values of $\mathrm{p} \rightarrow \mathrm{r}$ is F and $\mathrm{p} \leftrightarrow \mathrm{q}$ is F . Then the truth values of $(\sim p \vee q) ...
MHT CET 2024 16th May Evening Shift
The statement $\sim(p \leftrightarrow \sim q)$ is
MHT CET 2024 16th May Morning Shift
The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to
MHT CET 2024 16th May Morning Shift
Let $S$ be a non-empty subset of $\mathbb{R}$. Consider the following statement: p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$. W...
MHT CET 2024 15th May Evening Shift
The contrapositive of the inverse of $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ is
MHT CET 2024 15th May Evening Shift
If p : The total prime numbers between 2 to 100 are 26. q : Zero is a complex number. $r$ : Least common multiple (L.C.M.) of 6 and 7 is 6 . Then whic...
MHT CET 2024 15th May Morning Shift
Contrapositive of the statement. 'If two numbers are equal, then their squares are equal' is
MHT CET 2024 15th May Morning Shift
If $p \rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively
MHT CET 2024 11th May Evening Shift
Contrapositive of the statement 'If two numbers are not equal, then their squares are not equal', is
MHT CET 2024 11th May Evening Shift
The following statement $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow((\sim \mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q})$ is
MHT CET 2024 11th May Morning Shift
Let $\mathrm{p}, \mathrm{q}$ and r be the statements $\mathrm{p}: \mathrm{X}$ is an equilateral triangle $\mathrm{q}: \mathrm{X}$ is isosceles triangl...
MHT CET 2024 11th May Morning Shift
Let p : A man is judge. $\mathrm{q}: \mathrm{He}$ is honest. The inverse of $p \rightarrow q$ is
MHT CET 2024 10th May Evening Shift
The expression $((p \wedge q) \vee(p \vee \sim q)) \wedge(\sim p \wedge \sim q)$ is equivalent to
MHT CET 2024 10th May Evening Shift
The converse of "If 3 is a prime number, then 3 is odd." is
MHT CET 2024 10th May Evening Shift
If $(p \wedge \sim r) \rightarrow(\sim p \vee q)$ has truth value False, then truth values of $p, q, r$ are respectively.
MHT CET 2024 10th May Morning Shift
Negation of the statement "The payment will be made if and only if the work is finished in time." is
MHT CET 2024 10th May Morning Shift
The inverse of $p \rightarrow(q \rightarrow r)$ is logically equivalent to
MHT CET 2024 9th May Evening Shift
If $\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \sim \mathrm{q})$ is false, then the truth values of p and q are respectively
MHT CET 2024 9th May Evening Shift
Negation of the statement ' Horses have wings if and only if crows have tails. ' is
MHT CET 2024 9th May Morning Shift
Consider the statements given by following : (A) If $3+3=7$, then $4+3=8$. (B) If $5+3=8$, then earth is flat. (C) If both (A) and (B) are true, t...
MHT CET 2024 9th May Morning Shift
In a class of 300 students, every student reads 5 news papers and every news paper is read by 60 students. Then the number of newspapers is
MHT CET 2024 9th May Morning Shift
Let $p, q, r$ be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim q \vee r)$ is $F$. Then the truth values of $p, q, r$ ar...
MHT CET 2024 4th May Evening Shift
The converse of $[p \wedge(\sim q)] \rightarrow r$ is
MHT CET 2024 4th May Evening Shift
If the statements $p, q$ and $r$ have the truth values $\mathrm{F}, \mathrm{T}, \mathrm{F}$ respectively, then the truth values of the statement patte...
MHT CET 2024 4th May Morning Shift
The statement pattern $[p \wedge(q \vee r)] \vee[\sim r \wedge \sim q \wedge p]$ is equivalent to
MHT CET 2024 4th May Morning Shift
If $(p \wedge \sim q) \wedge(p \wedge r) \rightarrow \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively
MHT CET 2024 3rd May Evening Shift
The new switching circuit for the following circuit by simplifying the given circuit is ...
MHT CET 2024 3rd May Evening Shift
$$\sim[(\mathrm{p} \vee \sim \mathrm{q}) \rightarrow(\mathrm{p} \wedge \sim \mathrm{q})] \equiv$$
MHT CET 2024 3rd May Morning Shift
If p and q are statements, then _________ is a contingency.
MHT CET 2024 3rd May Morning Shift
Consider the following statements p : the switch $\mathrm{S}_1$ is closed. q : the switch $\mathrm{S}_2$ is closed. $r$ : the switch $\mathrm{S}_3$ is...
MHT CET 2024 2nd May Evening Shift
The negation of contrapositive of the statement $\mathrm{p} \rightarrow(\sim \mathrm{q} \wedge \mathrm{r})$ is
MHT CET 2024 2nd May Evening Shift
Which one of the following is the pair of equivalent circuits? ...
MHT CET 2024 2nd May Morning Shift
If the statement $p \vee \sim(q \wedge r)$ is false, then the truth values of $p, q$ and $r$ are respectively
MHT CET 2024 2nd May Morning Shift
If statement I : If the work is not finished on time, the contractor is in trouble. statement II : Either the work is finished on time or the contract...
MHT CET 2023 14th May Evening Shift
If the statement $$\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$$ is false, then true statement/statement pattern is
MHT CET 2023 14th May Evening Shift
The statement $$[\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})] \vee[\sim \mathrm{r} \wedge \sim \mathrm{q} \wedge \mathrm{p}]$$ is equivalent to...
MHT CET 2023 14th May Morning Shift
The negation of the statement "The number is an odd number if and only if it is divisible by 3."
MHT CET 2023 14th May Morning Shift
The statement $$[(p \rightarrow q) \wedge \sim q] \rightarrow r$$ is tautology, when $$r$$ is equivalent to
MHT CET 2023 13th May Evening Shift
If $$q$$ is false and $$p \wedge q \leftrightarrow r$$ is true, then ............ is a tautology.
MHT CET 2023 13th May Evening Shift
Negation of contrapositive of statement pattern $$(p \vee \sim q) \rightarrow(p \wedge \sim q)$$ is
MHT CET 2023 13th May Morning Shift
The expression $$(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$$ is equivalent to
MHT CET 2023 13th May Morning Shift
Negation of inverse of the following statement pattern $$(p \wedge q) \rightarrow(p \vee \sim q)$$ is
MHT CET 2023 12th May Evening Shift
Let Statement 1 : If a quadrilateral is a square, then all of its sides are equal. Statement 2: All the sides of a quadrilateral are equal, then it is...
MHT CET 2023 12th May Evening Shift
The given following circuit is equivalent to ...
MHT CET 2023 12th May Morning Shift
The inverse of the statement "If the surface area increase, then the pressure decreases.", is
MHT CET 2023 12th May Morning Shift
The contrapositive of "If $$x$$ and $$y$$ are integers such that $$x y$$ is odd, then both $$x$$ and $$y$$ are odd" is
MHT CET 2023 11th May Evening Shift
The logical statement $$(\sim(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})) \wedge(\sim \mathrm{q} \wedge \mathrm{r})$$ is equi...
MHT CET 2023 11th May Evening Shift
If truth value of logical statement $$(p \leftrightarrow \sim q) \rightarrow(\sim p \wedge q)$$ is false, then the truth values of $$p$$ and $$q$$ are...
MHT CET 2023 11th May Morning Shift
The statement pattern $$\mathrm{p} \rightarrow \sim(\mathrm{p} \wedge \sim \mathrm{q})$$ is equivalent to
MHT CET 2023 10th May Evening Shift
If $$\mathrm{p}$$ and $$\mathrm{q}$$ are true statements and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false statements, then the truth values of the stat...
MHT CET 2023 10th May Evening Shift
The negation of the statement pattern $$\sim s \vee(\sim r \wedge s)$$ is equivalent to
MHT CET 2023 10th May Morning Shift
The logical statement $$[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$$ is equivalent to
MHT CET 2023 10th May Morning Shift
The given circuit is equivalent to ...
MHT CET 2023 9th May Evening Shift
Negation of the statement "The payment will be made if and only if the work is finished in time." Is
MHT CET 2023 9th May Evening Shift
Let $$\mathrm{p}, \mathrm{q}, \mathrm{r}$$ be three statements, then $$[p \rightarrow(q \rightarrow r)] \leftrightarrow[(p \wedge q) \rightarrow r]$$ ...
MHT CET 2023 9th May Morning Shift
If truth values of statements $$\mathrm{p}, \mathrm{q}$$ are true, and $$\mathrm{r}$$, $$s$$ are false, then the truth values of the following stateme...
MHT CET 2023 9th May Morning Shift
The negation of the statement $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is
MHT CET 2022 11th August Evening Shift
If $$p: \forall n \in I N, n^2+n$$ is an even number $$q: \forall n \in I N, n^2-n$$ is an odd numer, then the truth values of $$p \wedge q, p \vee q$...
MHT CET 2022 11th August Evening Shift
The negation of the statement pattern $$p \vee(q \rightarrow \sim r)$$ is
MHT CET 2022 11th August Evening Shift
The negation of the statement, "The payment will be made if and only if the work is finished in time" is
MHT CET 2021 24th September Evening Shift
The negation of '$$\forall x \in N, x^2+x$$ is even number' is
MHT CET 2021 24th September Evening Shift
If $$\mathrm{p}$$ : It is raining. $$\mathrm{q}$$ : Weather is pleasant then simplified form of the statement "It is not true, if it is raining then w...
MHT CET 2021 24th September Morning Shift
The negation of $$p \wedge(q \rightarrow r)$$ is
MHT CET 2021 24th September Morning Shift
If $$\mathrm{p}$$ : It is raining and $$\mathrm{q}$$ : It is pleasant, then the symbolic form of "It is neither raining nor pleasant" is
MHT CET 2021 23rd September Evening Shift
"If two triangles are congruent, then their areas are equal." is the given statement, then the contrapositive of the inverse of the given statement is...
MHT CET 2021 23rd September Evening Shift
The negation of inverse of $$\sim \mathrm{p} \rightarrow \mathrm{q}$$ is
MHT CET 2021 23th September Morning Shift
S1 : If $$-$$7 is an integer, then $$\sqrt{-7}$$ is a complex number $$\mathrm{S} 2$$ : $$-$$7 is not an integer or $$\sqrt{-7}$$ is a complex number...
MHT CET 2021 23th September Morning Shift
Negation of the statement : $$3+6>8$$ and $$2+3
MHT CET 2021 22th September Evening Shift
Given $$\mathrm{p}$$ : A man is a judge, $$\mathrm{q}$$ : A man is honest If $$\mathrm{S} 1$$ : If a man is a judge, then he is honest S2 : If a man i...
MHT CET 2021 22th September Evening Shift
The statement pattern $$(p \wedge q) \wedge[(p \wedge q) \vee(\sim p \wedge q)]$$ is equivalent to
MHT CET 2021 22th September Evening Shift
Let $$a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$$ and $$b:(p \vee s) \leftrightarrow(q \wedge r)$$. If the truth values of $$p$$ and $$q$$ are true...
MHT CET 2021 22th September Morning Shift
If statements $$\mathrm{p}$$ and $$\mathrm{q}$$ are true and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false, then truth values of $$\sim(\mathrm{p} \righ...
MHT CET 2021 22th September Morning Shift
The expression $$[(p \wedge \sim q) \vee q] \vee(\sim p \wedge q)$$ is equivalent to
MHT CET 2021 21th September Evening Shift
The logical statement (p $$\to$$ q) $$\wedge$$ (q $$\to$$ ~p) is equivalent to
MHT CET 2021 21th September Evening Shift
If p $$\to$$ (~p $$\vee$$ q) is false, then the truth values of p and q are, respectively
MHT CET 2021 21th September Morning Shift
Negation of the statement $$\forall x \in R, x^2+1=0$$ is
MHT CET 2021 21th September Morning Shift
If $$p, q$$ are true statements and $$r$$ is false statement, then which of the following is correct.
MHT CET 2021 20th September Evening Shift
p : It rains today q : I am going to school r : I will meet my friend s : I will go to watch a movie. Then symbolic form of the statement "If it does ...
MHT CET 2021 20th September Evening Shift
Negation of $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is
MHT CET 2021 20th September Morning Shift
The negation of a statement 'x $$\in$$ A $$\cap$$ B $$\to$$ (x $$\in$$ A and x $$\in$$ B)' is
MHT CET 2021 20th September Morning Shift
The logical expression $$\mathrm{p} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q}) \equiv$$
MHT CET 2020 19th October Evening Shift
The negation of the statement pattern $\sim p \vee(q \rightarrow \sim r)$ is
MHT CET 2020 19th October Evening Shift
The statement pattern $p \wedge(q \vee \sim p)$ is equivalent to
MHT CET 2020 16th October Evening Shift
The negation of the statement ' He is poor but happy' is
MHT CET 2020 16th October Evening Shift
If $$p, q$$ are true statement and $$r$$ is false statement, then which of the following statements is a true statement.
MHT CET 2020 16th October Morning Shift
If $$p \rightarrow(\sim p \vee q)$$ is false, then the truth values of $$p$$ and $$q$$ are respectively
MHT CET 2020 16th October Morning Shift
The symbolic form of the following circuit is (where $$p, q$$ represents switches $$S_1$$ and $$s_2$$ closed respectively) ...
MHT CET 2019 3rd May Morning Shift
Let $a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$ and $b:(p \vee s) \leftrightarrow(q \wedge r)$. If the truth values of $p$ and $q$ are true and tha...
MHT CET 2019 3rd May Morning Shift
5. "If two triangles are congruent, then their areas are equal" is the given statement then the contrapositive of, the inverse of the given statement ...
MHT CET 2019 3rd May Morning Shift
Which of the following statement pattern is a tautology?
MHT CET 2019 2nd May Evening Shift
If $p$ and $q$ are true and $r$ and $s$ are false statements, then which of the following is true?
MHT CET 2019 2nd May Evening Shift
The negation of " $\forall, n \in N, n+7>6$ " is .............
MHT CET 2019 2nd May Evening Shift
Which of the following statements is contingency?
MHT CET 2019 2nd May Morning Shift
The statement pattern $(p \wedge q) \wedge[\sim r \vee(p \wedge q)] \vee(\sim p \wedge q)$ is equivalent to ...........
MHT CET 2019 2nd May Morning Shift
Which of the following is not equivalent to $p \rightarrow q$.
MHT CET 2019 2nd May Morning Shift
The equivalent form of the statement $\sim(p \rightarrow \sim q)$ is $\ldots$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12