Mathematical Reasoning · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

The negation of statement pattern $(\mathrm{p} \wedge \sim \mathrm{q}) \rightarrow(\mathrm{p} \vee \sim \mathrm{q})$ is

MHT CET 2025 5th May Evening Shift
2

If p : switch $\mathrm{S}_1$ is closed, q : switch $\mathrm{S}_2$ is closed then correct interpretation from the following circuit is

MHT CET 2025 5th May Evening Shift
3

Which of the following statement is a tautology?

MHT CET 2025 26th April Evening Shift
4

If $p, q, r, s$ are statements, where, $\mathrm{p}: \mathrm{A}^2-\mathrm{B}^2=(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B}) ; \mathrm{A}, \mathrm{B}$ are matrices, $A B \neq B A$

q: $5 \leq 5$

r: ${ }^8 \mathrm{C}_1+{ }^8 \mathrm{C}_2+{ }^8 \mathrm{C}_3+\ldots \ldots \ldots . .+{ }^8 \mathrm{C}_8=256$

s: Maximum value of ${ }^8 \mathrm{C}_{\mathrm{r}}$ is 70 then the statement from the following having truth value true is ….

MHT CET 2025 26th April Evening Shift
5

If the truth value of the expression $[(p \vee q) \wedge(q \rightarrow r) \wedge(\sim r)] \rightarrow(p \wedge q)$ is False, then truth values of $p, q, r$ are respectively.

MHT CET 2025 26th April Morning Shift
6

Consider statements $\mathrm{p}: \mathrm{S}_1$ is closed; $\mathrm{q}: \mathrm{S}_2$ is closed; $\mathrm{r}: \mathrm{S}_3$ is closed. The simplified equivalent circuit diagram and its logical statement for the switching circuit is respectively.

MHT CET 2025 26th April Morning Shift Mathematics - Mathematical Reasoning Question 3 English
MHT CET 2025 26th April Morning Shift
7

Consider the following three statements

(A) If $3+2=7$ then $4+3=8$.

(B) If $5+2=7$ then earth is flat.

(C) If both (A) and (B) are true then $5+6=11$. Which of the following statements is correct?

MHT CET 2025 25th April Evening Shift
8

If $p \equiv$ The switch $S_1$ is closed, $q \equiv$ The switch $\mathrm{S}_2$ is closed, $\mathrm{r} \equiv$ switch $\mathrm{S}_3$ is closed, then symbolic form of following switching circuit is equivalent to

MHT CET 2025 25th April Evening Shift
9

If the statements $p, q$ and $r$ are true, false and true statements respectively, then the truth value of the statement pattern $[\sim \mathrm{q} \wedge(\mathrm{p} \vee \sim \mathrm{q}) \wedge \sim \mathrm{r}] \vee \mathrm{p}$ and the truth value of its dual statement respectively are

MHT CET 2025 25th April Morning Shift
10

The negation of the statement "The triangle is an equilateral or isosceles triangle and the triangle is not isosceles and it is right angled" is

MHT CET 2025 25th April Morning Shift
11

Consider the statements given by following

(A) If $4+3=8$, then $5+3=9$

(B) If $6+4=10$, then moon is flat

(C) If both (A) and (B) are true, then $5+6=17$

Then which of the following statement is correct?

MHT CET 2025 23rd April Evening Shift
12

Number of switches in alternative equivalent simple circuit for the circuit is (are)

MHT CET 2025 23rd April Evening Shift Mathematics - Mathematical Reasoning Question 7 English
MHT CET 2025 23rd April Evening Shift
13

Which of the following is the negation of the statement " For all M>0, there exist $x \in \mathrm{~s}$ such that $x \geqslant \mathrm{M}^{\prime \prime}$

MHT CET 2025 23rd April Morning Shift
14

The contrapositive of the statement $\sim p \vee(q \wedge \sim r)$ is

MHT CET 2025 23rd April Morning Shift
15

$p:$ If 7 is an odd number then 7 is divisible by 2 .

q : If 7 is prime number then 7 is an odd number. If $V_1$ and $V_2$ are respective truth values of contrapositive of p and q then $\left(\mathrm{V}_1, \mathrm{~V}_2\right) \equiv$

MHT CET 2025 22nd April Evening Shift
16

If $p$ : switch $S_1$ is closed, $q$ : switch $S_2$ is closed, $r$ : switch $S_3$ closed, then the symbolic form of the following switching circuit is equivalent to

Switching Circuit:

MHT CET 2025 22nd April Evening Shift Mathematics - Mathematical Reasoning Question 13 English

MHT CET 2025 22nd April Evening Shift
17

If the truth value of the statement pattern $[p \wedge \sim r] \rightarrow \sim r \wedge q$ is False, then which of the following has truth value False?

MHT CET 2025 22nd April Morning Shift
18

Which of the following statements has the truth value T ?

A: cube roots of unity are in Geometric progression and their sum is 1

B: $4+7>10$ iff $2+8<10$

C: $\exists x \in \mathbb{N}$ such that $x^2-3 x+2=0$ and $\exists \mathrm{n} \in \mathbb{N}$ such that n is an odd number

D: $3+\mathrm{i}$ is a complex number or $\sqrt{2}+\sqrt{3}=\sqrt{5}$

MHT CET 2025 22nd April Morning Shift
19

If $\{(\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\mathrm{p} \wedge \mathrm{r})\} \rightarrow \sim \mathrm{p} \vee \mathrm{q}$ has truth value false then truth values of the statements $p, q, r$ are respectively

MHT CET 2025 21st April Evening Shift
20

The correct simplified circuit diagram for the logical statement $[\{\mathrm{q} \wedge(\sim \mathrm{q} \vee \mathrm{r})\} \wedge\{\sim \mathrm{p} \vee(\mathrm{p} \wedge \sim \mathrm{r})\}] \vee(\mathrm{p} \wedge \mathrm{r})$ Where $p, q, r$ represents switches $s_1, s_2, s_3$ respectively.

MHT CET 2025 21st April Evening Shift
21

The logical statement

$$ [\sim(\sim p \vee q) \vee(p \wedge r) \wedge(\sim q \wedge r)] $$

is equivalent to

MHT CET 2025 21st April Morning Shift
22

If the statement pattern $(p \wedge q) \rightarrow(r \vee \sim s)$ is false, then the truth values of $p, q, r$ and $s$ are respectively

MHT CET 2025 21st April Morning Shift
23

The negation of $(p \wedge \sim q) \rightarrow(p \vee \sim q)$ is

MHT CET 2025 20th April Evening Shift
24

The equivalent statement of "If three vertices of a triangle are represented by cube roots of unity, then the triangle is an equilateral triangle" is

MHT CET 2025 20th April Evening Shift
25

If a statement $q$ has truth value False and $(\mathrm{p} \wedge \mathrm{q}) \leftrightarrow \mathrm{r}$ has truth value True then which of the following has truth value true?

MHT CET 2025 20th April Morning Shift
26

The logically equivalent statement of $(\sim \mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{p} \wedge \sim \mathrm{q})$ is

MHT CET 2025 20th April Morning Shift
27

The last column in the truth table of the statement pattern $[\mathrm{p} \rightarrow(\mathrm{q} \wedge \sim \mathrm{p})] \vee[(\mathrm{p} \vee \sim \mathrm{q}) \wedge \mathrm{p}]$ is

MHT CET 2025 19th April Evening Shift
28
Which of the following are pairs of equivalent circuitsMHT CET 2025 19th April Evening Shift Mathematics - Mathematical Reasoning Question 27 English
MHT CET 2025 19th April Evening Shift
29
The statement pattern $[(p \rightarrow q) \wedge \sim q] \rightarrow r$ is a tautology when $r$ is equivalent to
MHT CET 2025 19th April Morning Shift
30

Consider the three statements

$\mathrm{p}: \forall \mathrm{n} \in \mathbb{N}, 10 \mathrm{n}-3$ is a prime number, when n is not divisible by 3.

$\mathrm{q}: \frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$ are the direction cosines of a directed line.

$\mathrm{r}: \sin x$ is an increasing function in the interval $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Then which of the following statement pattern has truth value true?

MHT CET 2025 19th April Morning Shift
31

Truth values of $\mathrm{p} \rightarrow \mathrm{r}$ is F and $\mathrm{p} \leftrightarrow \mathrm{q}$ is F . Then the truth values of $(\sim p \vee q) \rightarrow(p \vee \sim q)$ and $(p \wedge \sim q) \rightarrow(\sim p \wedge q)$ are respectively

MHT CET 2024 16th May Evening Shift
32

The statement $\sim(p \leftrightarrow \sim q)$ is

MHT CET 2024 16th May Evening Shift
33

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

MHT CET 2024 16th May Morning Shift
34

Let $S$ be a non-empty subset of $\mathbb{R}$. Consider the following statement:

p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$.

Which of the following statements is the negation of the statement p?

MHT CET 2024 16th May Morning Shift
35

The contrapositive of the inverse of $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ is

MHT CET 2024 15th May Evening Shift
36

If p : The total prime numbers between 2 to 100 are 26.

q : Zero is a complex number.

$r$ : Least common multiple (L.C.M.) of 6 and 7 is 6 .

Then which of the following is correct?

MHT CET 2024 15th May Evening Shift
37

Contrapositive of the statement. 'If two numbers are equal, then their squares are equal' is

MHT CET 2024 15th May Morning Shift
38

If $p \rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively

MHT CET 2024 15th May Morning Shift
39

Contrapositive of the statement 'If two numbers are not equal, then their squares are not equal', is

MHT CET 2024 11th May Evening Shift
40

The following statement $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow((\sim \mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q})$ is

MHT CET 2024 11th May Evening Shift
41

Let $\mathrm{p}, \mathrm{q}$ and r be the statements

$\mathrm{p}: \mathrm{X}$ is an equilateral triangle

$\mathrm{q}: \mathrm{X}$ is isosceles triangle

r: q $\vee \sim p$,

then the equivalent statement of $r$ is

MHT CET 2024 11th May Morning Shift
42

Let p : A man is judge. $\mathrm{q}: \mathrm{He}$ is honest. The inverse of $p \rightarrow q$ is

MHT CET 2024 11th May Morning Shift
43

The expression $((p \wedge q) \vee(p \vee \sim q)) \wedge(\sim p \wedge \sim q)$ is equivalent to

MHT CET 2024 10th May Evening Shift
44

The converse of "If 3 is a prime number, then 3 is odd." is

MHT CET 2024 10th May Evening Shift
45

If $(p \wedge \sim r) \rightarrow(\sim p \vee q)$ has truth value False, then truth values of $p, q, r$ are respectively.

MHT CET 2024 10th May Evening Shift
46

Negation of the statement "The payment will be made if and only if the work is finished in time." is

MHT CET 2024 10th May Morning Shift
47

The inverse of $p \rightarrow(q \rightarrow r)$ is logically equivalent to

MHT CET 2024 10th May Morning Shift
48

If $\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \sim \mathrm{q})$ is false, then the truth values of p and q are respectively

MHT CET 2024 9th May Evening Shift
49

Negation of the statement ' Horses have wings if and only if crows have tails. ' is

MHT CET 2024 9th May Evening Shift
50

Consider the statements given by following :

(A) If $3+3=7$, then $4+3=8$.

(B) If $5+3=8$, then earth is flat.

(C) If both (A) and (B) are true, then $5+6=17$.

Then which of the following statements is correct?

MHT CET 2024 9th May Morning Shift
51

In a class of 300 students, every student reads 5 news papers and every news paper is read by 60 students. Then the number of newspapers is

MHT CET 2024 9th May Morning Shift
52

Let $p, q, r$ be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim q \vee r)$ is $F$. Then the truth values of $p, q, r$ are respectively

MHT CET 2024 9th May Morning Shift
53

The converse of $[p \wedge(\sim q)] \rightarrow r$ is

MHT CET 2024 4th May Evening Shift
54

If the statements $p, q$ and $r$ have the truth values $\mathrm{F}, \mathrm{T}, \mathrm{F}$ respectively, then the truth values of the statement patterns $(p \wedge \sim q) \rightarrow r$ and $(p \vee q) \rightarrow r$ are respectively

MHT CET 2024 4th May Evening Shift
55

The statement pattern $[p \wedge(q \vee r)] \vee[\sim r \wedge \sim q \wedge p]$ is equivalent to

MHT CET 2024 4th May Morning Shift
56

If $(p \wedge \sim q) \wedge(p \wedge r) \rightarrow \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively

MHT CET 2024 4th May Morning Shift
57

The new switching circuit for the following circuit by simplifying the given circuit is

MHT CET 2024 3rd May Evening Shift Mathematics - Mathematical Reasoning Question 54 English

MHT CET 2024 3rd May Evening Shift
58

$$\sim[(\mathrm{p} \vee \sim \mathrm{q}) \rightarrow(\mathrm{p} \wedge \sim \mathrm{q})] \equiv$$

MHT CET 2024 3rd May Evening Shift
59

If p and q are statements, then _________ is a contingency.

MHT CET 2024 3rd May Morning Shift
60

Consider the following statements

p : the switch $\mathrm{S}_1$ is closed.

q : the switch $\mathrm{S}_2$ is closed.

$r$ : the switch $\mathrm{S}_3$ is closed.

Then the switching circuit represented by the statement $(p \wedge q) \vee(\sim p \wedge(\sim q \vee p \vee r))$ is

MHT CET 2024 3rd May Morning Shift
61

The negation of contrapositive of the statement $\mathrm{p} \rightarrow(\sim \mathrm{q} \wedge \mathrm{r})$ is

MHT CET 2024 2nd May Evening Shift
62

Which one of the following is the pair of equivalent circuits?

MHT CET 2024 2nd May Evening Shift Mathematics - Mathematical Reasoning Question 59 English

MHT CET 2024 2nd May Evening Shift
63

If the statement $p \vee \sim(q \wedge r)$ is false, then the truth values of $p, q$ and $r$ are respectively

MHT CET 2024 2nd May Morning Shift
64

If statement I : If the work is not finished on time, the contractor is in trouble. statement II : Either the work is finished on time or the contractor is in trouble. then

MHT CET 2024 2nd May Morning Shift
65

If the statement $$\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$$ is false, then true statement/statement pattern is

MHT CET 2023 14th May Evening Shift
66

The statement $$[\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})] \vee[\sim \mathrm{r} \wedge \sim \mathrm{q} \wedge \mathrm{p}]$$ is equivalent to

MHT CET 2023 14th May Evening Shift
67

The negation of the statement

"The number is an odd number if and only if it is divisible by 3."

MHT CET 2023 14th May Morning Shift
68

The statement $$[(p \rightarrow q) \wedge \sim q] \rightarrow r$$ is tautology, when $$r$$ is equivalent to

MHT CET 2023 14th May Morning Shift
69

If $$q$$ is false and $$p \wedge q \leftrightarrow r$$ is true, then ............ is a tautology.

MHT CET 2023 13th May Evening Shift
70

Negation of contrapositive of statement pattern $$(p \vee \sim q) \rightarrow(p \wedge \sim q)$$ is

MHT CET 2023 13th May Evening Shift
71

The expression $$(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$$ is equivalent to

MHT CET 2023 13th May Morning Shift
72

Negation of inverse of the following statement pattern $$(p \wedge q) \rightarrow(p \vee \sim q)$$ is

MHT CET 2023 13th May Morning Shift
73

Let

Statement 1 : If a quadrilateral is a square, then all of its sides are equal.

Statement 2: All the sides of a quadrilateral are equal, then it is a square.

MHT CET 2023 12th May Evening Shift
74

The given following circuit is equivalent to

MHT CET 2023 12th May Evening Shift Mathematics - Mathematical Reasoning Question 100 English

MHT CET 2023 12th May Evening Shift
75

The inverse of the statement "If the surface area increase, then the pressure decreases.", is

MHT CET 2023 12th May Morning Shift
76

The contrapositive of "If $$x$$ and $$y$$ are integers such that $$x y$$ is odd, then both $$x$$ and $$y$$ are odd" is

MHT CET 2023 12th May Morning Shift
77

The logical statement $$(\sim(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})) \wedge(\sim \mathrm{q} \wedge \mathrm{r})$$ is equivalent to

MHT CET 2023 11th May Evening Shift
78

If truth value of logical statement $$(p \leftrightarrow \sim q) \rightarrow(\sim p \wedge q)$$ is false, then the truth values of $$p$$ and $$q$$ are respectively

MHT CET 2023 11th May Evening Shift
79

The statement pattern $$\mathrm{p} \rightarrow \sim(\mathrm{p} \wedge \sim \mathrm{q})$$ is equivalent to

MHT CET 2023 11th May Morning Shift
80

If $$\mathrm{p}$$ and $$\mathrm{q}$$ are true statements and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false statements, then the truth values of the statement patterns $$(p \wedge q) \vee r$$ and $$(\mathrm{p} \vee \mathrm{s}) \leftrightarrow(\mathrm{q} \wedge \mathrm{r})$$ are respectively

MHT CET 2023 10th May Evening Shift
81

The negation of the statement pattern $$\sim s \vee(\sim r \wedge s)$$ is equivalent to

MHT CET 2023 10th May Evening Shift
82

The logical statement $$[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$$ is equivalent to

MHT CET 2023 10th May Morning Shift
83

The given circuit is equivalent to

MHT CET 2023 10th May Morning Shift Mathematics - Mathematical Reasoning Question 110 English

MHT CET 2023 10th May Morning Shift
84

Negation of the statement

"The payment will be made if and only if the work is finished in time." Is

MHT CET 2023 9th May Evening Shift
85

Let $$\mathrm{p}, \mathrm{q}, \mathrm{r}$$ be three statements, then $$[p \rightarrow(q \rightarrow r)] \leftrightarrow[(p \wedge q) \rightarrow r]$$ is

MHT CET 2023 9th May Evening Shift
86

If truth values of statements $$\mathrm{p}, \mathrm{q}$$ are true, and $$\mathrm{r}$$, $$s$$ are false, then the truth values of the following statement patterns are respectively

$$\begin{aligned} & \mathrm{a}: \sim(\mathrm{p} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{q} \vee \mathrm{s}) \\ & \mathrm{b}:(\sim \mathrm{q} \wedge \sim \mathrm{r}) \leftrightarrow(\mathrm{p} \vee \mathrm{s}) \\ & \mathrm{c}:(\sim \mathrm{p} \vee \mathrm{q}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s}) \end{aligned}$$

MHT CET 2023 9th May Morning Shift
87

The negation of the statement $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is

MHT CET 2023 9th May Morning Shift
88

If $$p: \forall n \in I N, n^2+n$$ is an even number $$q: \forall n \in I N, n^2-n$$ is an odd numer, then the truth values of $$p \wedge q, p \vee q$$ and $$p \rightarrow q$$ are respectively

MHT CET 2022 11th August Evening Shift
89

The negation of the statement pattern $$p \vee(q \rightarrow \sim r)$$ is

MHT CET 2022 11th August Evening Shift
90

The negation of the statement, "The payment will be made if and only if the work is finished in time" is

MHT CET 2022 11th August Evening Shift
91

The negation of '$$\forall x \in N, x^2+x$$ is even number' is

MHT CET 2021 24th September Evening Shift
92

If $$\mathrm{p}$$ : It is raining.

$$\mathrm{q}$$ : Weather is pleasant

then simplified form of the statement "It is not true, if it is raining then weather is not pleasant" is

MHT CET 2021 24th September Evening Shift
93

The negation of $$p \wedge(q \rightarrow r)$$ is

MHT CET 2021 24th September Morning Shift
94

If $$\mathrm{p}$$ : It is raining and $$\mathrm{q}$$ : It is pleasant, then the symbolic form of "It is neither raining nor pleasant" is

MHT CET 2021 24th September Morning Shift
95

"If two triangles are congruent, then their areas are equal." is the given statement, then the contrapositive of the inverse of the given statement is

(Where $$\mathrm{p}$$ : Two triangles are congruent, $$\mathrm{q}$$ : Their areas are equal)

MHT CET 2021 23rd September Evening Shift
96

The negation of inverse of $$\sim \mathrm{p} \rightarrow \mathrm{q}$$ is

MHT CET 2021 23rd September Evening Shift
97

S1 : If $$-$$7 is an integer, then $$\sqrt{-7}$$ is a complex number

$$\mathrm{S} 2$$ : $$-$$7 is not an integer or $$\sqrt{-7}$$ is a complex number

MHT CET 2021 23th September Morning Shift
98

Negation of the statement : $$3+6>8$$ and $$2+3<6$$ is

MHT CET 2021 23th September Morning Shift
99

Given $$\mathrm{p}$$ : A man is a judge, $$\mathrm{q}$$ : A man is honest

If $$\mathrm{S} 1$$ : If a man is a judge, then he is honest

S2 : If a man is a judge, then he is not honest

S3 : A man is not a judge or he is honest Then

S4 : A man is a judge and he is honest

MHT CET 2021 22th September Evening Shift
100

The statement pattern $$(p \wedge q) \wedge[(p \wedge q) \vee(\sim p \wedge q)]$$ is equivalent to

MHT CET 2021 22th September Evening Shift
101

Let $$a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$$ and $$b:(p \vee s) \leftrightarrow(q \wedge r)$$.

If the truth values of $$p$$ and $$q$$ are true and that of $$r$$ and $$s$$ are false, then the truth values of $$a$$ and $$b$$ are respectively

MHT CET 2021 22th September Evening Shift
102

If statements $$\mathrm{p}$$ and $$\mathrm{q}$$ are true and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false, then truth values of $$\sim(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\mathrm{r} \wedge \mathrm{s})$$ and $$(\sim \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \leftrightarrow \mathrm{s})$$ are respectively.

MHT CET 2021 22th September Morning Shift
103

The expression $$[(p \wedge \sim q) \vee q] \vee(\sim p \wedge q)$$ is equivalent to

MHT CET 2021 22th September Morning Shift
104

The logical statement (p $$\to$$ q) $$\wedge$$ (q $$\to$$ ~p) is equivalent to

MHT CET 2021 21th September Evening Shift
105

If p $$\to$$ (~p $$\vee$$ q) is false, then the truth values of p and q are, respectively

MHT CET 2021 21th September Evening Shift
106

Negation of the statement $$\forall x \in R, x^2+1=0$$ is

MHT CET 2021 21th September Morning Shift
107

If $$p, q$$ are true statements and $$r$$ is false statement, then which of the following is correct.

MHT CET 2021 21th September Morning Shift
108

p : It rains today

q : I am going to school

r : I will meet my friend

s : I will go to watch a movie.

Then symbolic form of the statement "If it does not rain today or I won't go to school, then I will meet my friend and I will go to watch a movie" is

MHT CET 2021 20th September Evening Shift
109

Negation of $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is

MHT CET 2021 20th September Evening Shift
110

The negation of a statement 'x $$\in$$ A $$\cap$$ B $$\to$$ (x $$\in$$ A and x $$\in$$ B)' is

MHT CET 2021 20th September Morning Shift
111

The logical expression $$\mathrm{p} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q}) \equiv$$

MHT CET 2021 20th September Morning Shift
112

The negation of the statement pattern $\sim p \vee(q \rightarrow \sim r)$ is

MHT CET 2020 19th October Evening Shift
113

The statement pattern $p \wedge(q \vee \sim p)$ is equivalent to

MHT CET 2020 19th October Evening Shift
114

The negation of the statement ' He is poor but happy' is

MHT CET 2020 16th October Evening Shift
115

If $$p, q$$ are true statement and $$r$$ is false statement, then which of the following statements is a true statement.

MHT CET 2020 16th October Evening Shift
116

If $$p \rightarrow(\sim p \vee q)$$ is false, then the truth values of $$p$$ and $$q$$ are respectively

MHT CET 2020 16th October Morning Shift
117

The symbolic form of the following circuit is (where $$p, q$$ represents switches $$S_1$$ and $$s_2$$ closed respectively)

MHT CET 2020 16th October Morning Shift Mathematics - Mathematical Reasoning Question 84 English

MHT CET 2020 16th October Morning Shift
118

Let $a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$ and $b:(p \vee s) \leftrightarrow(q \wedge r)$. If the truth values of $p$ and $q$ are true and that of $r$ and $s$ are false, then the truth values of $a$ and $b$ are respectively......

MHT CET 2019 3rd May Morning Shift
119

5. "If two triangles are congruent, then their areas are equal" is the given statement then the contrapositive of, the inverse of the given statement is

MHT CET 2019 3rd May Morning Shift
120

Which of the following statement pattern is a tautology?

MHT CET 2019 3rd May Morning Shift
121

If $p$ and $q$ are true and $r$ and $s$ are false statements, then which of the following is true?

MHT CET 2019 2nd May Evening Shift
122

The negation of " $\forall, n \in N, n+7>6$ " is .............

MHT CET 2019 2nd May Evening Shift
123

Which of the following statements is contingency?

MHT CET 2019 2nd May Evening Shift
124

The statement pattern $(p \wedge q) \wedge[\sim r \vee(p \wedge q)] \vee(\sim p \wedge q)$ is equivalent to ...........

MHT CET 2019 2nd May Morning Shift
125

Which of the following is not equivalent to $p \rightarrow q$.

MHT CET 2019 2nd May Morning Shift
126

The equivalent form of the statement $\sim(p \rightarrow \sim q)$ is $\ldots$

MHT CET 2019 2nd May Morning Shift
EXAM MAP