1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\lim _\limits{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ has the value

A
2
B
$\frac{1}{2}$
C
4
D
3
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $a, b \in(a \neq 0)$. If the function $f$ is defined as

$$f(x)=\left\{\begin{array}{cc} \frac{2 x^2}{\mathrm{a}} & , 0 \leq x<1 \\ \mathrm{a} & , 1 \leq x<\sqrt{2} \\ \frac{2 \mathrm{~b}^2-4 b}{x} & , \sqrt{2} \leq x<\infty \end{array}\right.$$

is continuous in the interval $[0, \infty)$, then an ordered pair $(a, b)$ is

A
$(-\sqrt{2}, 1-\sqrt{3})$
B
$(\sqrt{2},-1+\sqrt{3})$
C
$(\sqrt{2}, 1-\sqrt{3})$
D
$(-\sqrt{2}, 1+\sqrt{3})$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $\mathrm{f}(x)=\left(\frac{5 x-8}{8-3 x}\right)^{\frac{3}{2 x-4}}$ if $x \neq 2$. $=\mathrm{k}$ if $x=2$. is continuous at $x=2$, then $\mathrm{k}=$

A
$\mathrm{e}^6$
B
$\mathrm{e}^2$
C
$e^{-6}$
D
$\mathrm{e}^{-2}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For each $x \in \mathbb{R}$, Let $[x]$ represent greatest integer function, then $\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$ is equal to

A
0
B
1
C
$\sin 1$
D
$-\sin 1$
MHT CET Subjects
EXAM MAP